

ARC SAC SCIENTIFIC REVIEW Appropriate water temperatures in which to conduct American Red Cross Aquatic Instructional programs

Questions to be addressed:

Water Temperature

- What is the appropriate safe temperature -range for conducting ARC aquatic programs?
- Are safe temperature ranges different for head-in vs head-out immersion activities?
- What variables exist that affect temperature ranges?
- What associated variables should be considered in modifying the suggested range?

Introduction/Overview:

Water temperature is a major factor in participant comfort and overall success of an American Red Cross Aquatic Instruction programs. Water that is too cold can lead to chilling and discomfort and result in limiting the time spent on necessary practice. The ARC currently references the Aquatic Exercise Association (AEA) guidelines for water temperature stating "a comfortable water temperature for swim classes is between 83° to 86°F (28.3° to 30°C)". These guidelines have recently been revised and updated for 2010. The current recommendation given for children swim lessons is 84°F / 28.9°C. The range that is listed as "ideal" for a "Learn to Swim (LTS)" program is from 84-89°F or 28.9- 31.7°C. The range of water temperatures recommendation for infant/ pre-school (ages 4 and under) programming is 90-93°F or 32.2 - 33.9°C.

The AEA guidelines also include a statement that suggests that these guidelines may not be appropriate for every program. For example, it is an accepted fact that "young children are more susceptible to hypothermia than older children" (ARC p.148). Red Cross recommends that if water and air temperatures cannot be maintained within acceptable ranges, the lesson needs to be shortened. These statements show recognition that there is a direct relationship between water temperature and time / duration of the lesson but there is little guidance beyond these reference statements.

In addition to age of the participant and duration of the lesson, temperature ranges may also need to be adjusted based on the type of programming. What this means for American Red Cross LTS programs is what levels are being offered and will participants be able maintain a level of activity that will support thermoregulation. Keeping participants active or active enough to stay warm is not always possible with every level. Limitations might include the size of the practice area, children who do not possess enough skill to keep moving or classes that are so large that participants stand around waiting for a turn. Any of these scenarios may require an adjustment to the water temperature recommendations.

And then there are programs that truly operate outside the norm for LTS programs ("norm" meaning the program structure currently recommended in the Water Safety Instructor Manual). Therefore, it is the purpose of this review to confirm the recommended temperature ranges provided by AEA and USA Swimming, to identify significant variables that affect thermoregulation and to provide more guidance where temperature extremes are the norm or program types and structure vary widely.

Review Process and Literature Search Performed

Pubmed search, Google scholar

Pubmed searched for studies using variations of the following concepts: cold water immersion, thermoregulation, thermal balance, immersion hypothermia, temperature regulation, swimming and water temperature

We found 116 articles and rejected 41 of these as not relevant to the question.

2010 USA Swimming Rules and Regulations (rule 103.6)

American Red Cross Water Safety Instructor Manual

Aquatic Exercise Association (AEA) 2010 Standards and Guidelines Aquatic Fitness Programming

Review of bibliography of selected manuscripts

Criteria for considering studies for this review

Only human studies (no mechanical models)

Swimming research with reference to water temperature and intensity of exercise Immersion to at least the middle of the sternum (head-in full immersion preferred but not required)

Definitions relevant to the discussion; (from Bligh J, and Johnson KG. Glossary of terms for thermal physiology. *Journal of Applied Physiology* 1973; 35(6): 941-961)

ACCLIMATION: A physiological change, occurring within the lifetime of an organism, which reduces the strain caused by experimentally induced stressful changes in particular climatic factors.

ACCLIMATIZATION: A physiological change, occurring within the lifetime of an organism, which reduces the strain caused by stressful changes in the natural climate.

AREA TOTAL BODY (Ap): The area of the outer surface of the body assumed smooth. $[m^2]$

BODY HEAT BALANCE: The steady-state relation in which heat production in the body equals heat loss to the environment.

CRITICAL TEMPERATURE, LOWER: The ambient temperature below which the rate of metabolic heat production of a resting thermoregulating animal increases by shivering and or nonshivering thermogenic processes to maintain thermal balance. *CRITICAL WATER TEMPERATURE (Tcw): the lowest water temperature in which a human subject can be immersed to the neck for a period 3 hours without shivering.*

FEVER: A pathological condition in which there is an abnormal rise in core temperature (Tc). The temperature rise in an individual may be considered as fever when it is greater than the mean SD for the species in basal condition.

HABITUATION: Reduction of responses to or perception of repeated stimulation.

HEAT STORAGE, CHANGE IN: The gain or loss of heat associated with change in body temperature or body mass.

HOMEOTHERMY: The pattern of temperature regulation in a TACHYMETABOLIC species in which the cyclic variation in core temperature, either nychthermally or seasonally, is maintained within arbitrarily defined limits ($\pm 2^{\circ}$ C) despite much larger variations in ambient temperature.

HYPOTHERMIA: The condition of a temperature regulating animal when the core temperature is more than one standard deviation (1 SD) below the mean core temperature of the species in resting conditions in a thermoneutral environment.

MET: an assigned unit of measurement to designate "sitting-resting" metabolic rate of man. 1 met = 58.15 W \cdot m⁻² = 50 kcal \cdot h⁻¹ \cdot m⁻²

It is an empirical unit of measurement to express the metabolic rate of a man whose clothing has an insulative value of 1 CLO when he is sitting at rest, in comfortable indoor surroundings (21°C).

METABOLIC FREE ENERGY PRODUCTION (*M*): The rate of transformation of chemical energy into heat and mechanical work by aerobic and anaerobic metabolic activities within an organism, usually expressed in terms of unit area of the total body surface area.

METABOLIC HEAT PRODUCTION (*H*): Rate of transformation of chemical energy into heat in an organism, usually expressed in terms of unit area of the total body surface.

METABOLIC RATE (MR): see *M*. MR may also be given as the total free energy production in the organism in unit time [W] or as the free energy production per unit mass of tissue in unit time [W·kg⁻¹].

METABOLISM: is a general term which relates to chemical and physical changes occurring in living organisms. In thermal physiology METABOLISM invariably relates to the transformation of chemical energy into free energy . . .

TEMPERATURE, AMBIENT (Ta): The average temperature of a gaseous or liquid environment (usually air or water) surrounding a body, as measured outside the thermal and hydrodynamic boundary layers that overlay the body [°C].

TEMPERATURE, CORE (Tc): The mean temperature of the tissues at a depth below that which is affected directly by a changing the temperature gradient through peripheral tissues. Mean core temperature cannot be measured accurately, and is generally represented by a specified core temperature, e.g., that of the rectum (Tre) [°C].

TEMPERATURE, MEAN BODY (Tb): The sum of the products of the heat capacity and temperature of all the tissues of the body divided by the total heat capacity of the organism.

Note: This heat capacity cannot be determined precisely in the living organism. Mean body temperature can be estimated approximately from measures of skin (mean skin temperature; Tsk) and core temperature.

TEMPERATURE REGULATION: The maintenance of the temperature or temperatures of a body within a restricted range under conditions involving variable internal and /or external heat loads.

TEMPERATURE REGULATION, BEHAVIORAL: The regulation of body temperature by complex patterns of responses of the skeletal musculature to heat and cold which modify the rates of heat production and/or heat loss (e.g., by exercise, change in body conformation, and in the thermal insulation of bedding and (in man) of clothing, and by the selection of an environment that reduces thermal stress).

THERMAL COMFORT: Subjective satisfaction with the thermal environment.

THERMAL CONDUCTANCE, TISSUE: The rate of heat transfer per unit area during steady state when temperature difference of 1°C is maintained across the tissue.

Note: this term relates to heat transfer down a temperature gradient from any tissue to its immediate environments, e.g., from a tissue to circulating blood as well as from the body core through peripheral tissues of the body surface.

THERMAL CONDUCTIVITY (k): A property of the material defined by the flow of heat by conduction through unit thickness of the material per unit area and per unit temperature difference maintained at right angles to the direction of heat flow.

THERMAL STRESS: Any change in the thermal relation between an organism and its environment which, if uncompensated by a temperature-regulatory response, would disturb the thermal equilibrium.

THERMOGENISIS, SHIVERING: An increase in the rate of heat production during cold exposure due to increased contractile activity of skeletal muscles not involving voluntary movements and external work.

THERMALNEUTRAL ZONE (TNZ): The range of ambient temperature within which metabolic rate is at a minimum, and within which temperature regulation is achieved by nonevaporative physical process alone [$^{\circ}$ C]

Scientific Foundation:

Much research has been done on immersion hypothermia, survival rates and safety measures. These will not be reiterated in this work.

Thermoregulation

Human beings, as all warm blooded animals, maintain core temperatures (Tre or Tc) within a very narrow range. The average core temperature of a human is around $37^{\circ}C$ (98.6°F) and body temperature extremes are demonstrated as a fever at $37.7^{\circ}C$ (100°F) and when the mean body temperature falls to approximately $35.4^{\circ}C$ (95.7°F) (20) just slightly more than 2°C. Therefore, our ability to regulate body temperature is critical for life safety and comfort.

Thermoregulation depends on the dynamic balance between heat gained (or generated) and heat lost to the environment. When a thermal stress is imposed on a human body, it reacts with a combination of metabolic and cardiovascular adjustments to maintain thermal comfort. The basic patterns of cold regulation include heat production by shivering and vasomotor responses which transfer heat down a thermal gradient from core to skin and then from skin to the environment. Vasoconstriction is a cold defense reaction that helps conserve heat by restricting blood flow to the periphery. When peripheral responses have been maximized, humans must either add insulation or rely on their ability to increase metabolism.

General responses to cold stress, whether in air or water, are similar in nature. However, resistance to the flow of heat energy is lower in the water as compared to air and becomes much lower when the skin and/or water are in motion. This makes temperature regulation during immersion more challenging than in air (29, 45, 47, 48).

The most comfortable temperature for a person at rest is referred to as "thermoneutral". This is the temperature at which unprotected man, at rest, will neither lose nor gain heat. Thermoneutrality in air is around 22.2°C (72°F)(19). An equivalent water temperature would be around 33°C (91.4°F). Cannon and Keatinge (1960) call this the "theoretical critical temperature", where man "could, in theory achieve thermal stability without an increase in metabolic rate . . ." (p. 338). Craig and Dvorak (1966) suggest that a neutral water temperature, (demonstrated by a mean body temperature that is the same at the beginning of an hour of immersion as at its conclusion) would have to be 34.6°C (94.2). Sagawa et al. (1988) confirm these findings. They reported thermoneutral for their subjects as a water temperature of 34°C.

Comparing Research

ARC SAC Water Temperature and ARC Aquatic Courses Scientific Review

Research involving human response to cold immersion is plentiful and in general seeks to establish different critical temperatures using a variety protocols. However, because direct measurement of the hypothalamic temperature is not possible, other interactions must be used (6). The selection of measurements and the variety of combinations makes it difficult to compare results. The most common temperature measurements include core temperature (rectal temperature and sometimes esophageal temperatures in adults), esophageal and tympanic temperature (in younger adults and children), skin temperature, mean body temperature, subcutaneous fat thickness, surface area to mass ratio and a variety of metabolic responses including VO_{2max} and metabolic rate.

Comparing research is further complicated because of differences in methodology. Studies differ with the temperature of the water, duration of exposure, depth of immersion (head-out, head-in, chest deep, to the first thoracic vertebrae), body position (vertical, semi recumbent, horizontal) and type of and intensity of exercise (assuming that an exercise protocol is used). It is therefore prudent to proceed with caution when trying to compare results.

The most common water temperatures used to study an unprotected subject at rest during headout immersion include $15^{\circ}C$ (9, 35, 36, 41, 71, 72), $18^{\circ}C$ (4, 16, 24, 25, 63), $20^{\circ}C$ (8, 9, 23, 38, 42, 43, 71, 72), $25^{\circ}C$ (8, 9, 32, 36, 39, 41, 69), $26^{\circ}C$ (12, 16, 24, 65), $28^{\circ}C$ (12, 39, 42, 43, 62, 71, 72). From these studies, certain general statements can be made. The following are general responses to water immersion in temperatures ranging from $15^{\circ}C$ to $33^{\circ}C$:

- 1) There is a direct relationship between water temperature (Tw) and the length of time a person can be comfortably immersed. (7, 12, 26, 34, 37, 39, 53, 65,75) (*As would be expected, when water temperature decreases, the duration of comfortable immersion also decreases.*)
- 2) Metabolic rate increases as the temperature of the water decreases (7, 8, 16, 24, 32, 57, 62). (*Shivering is similar to light exercise which increases the metabolic rate*).
- The range of water temperatures in which man can attain thermal balance can be extended by reducing the total surface area exposed to the water, by exercise (9, 13, 32, 36, 43, 44, 50, 57, 65) and by adding clothing (10, 22, 29, 34, 36, 51, 52,73).
- 4) Head submersion increases the cooling rate of the body (22, 28, 39, 52, 62, 69).
- 5) If water temperature and duration of immersion are controlled, there are a number of factors that act in concert to extend or reduce thermal comfort. These include but may not be limited to; surface area to mass ratio(14, 25, 26, 28, 38, 39, 44, 59 61, 63), subcutaneous fat thickness (3, 4, 7, 8, 9, 16, 24, 25, 28, 34, 35, 38, 42, 44, 49, 53, 54, 59, 60, 62, 64, 65, 69), age (10, 15, 18, 23, 40, 59, 62, 63, 71, 72, 73), gender (28, 37, 39, 40, 42, 43, 55, 59, 63, 71), rest v exercise (9, 26, 28, 32, 41, 45, 49, 65), level of fitness (15, 34, 40), and possibly acclimation (55)

- 6) The type and intensity of exercise in the water affects the cooling rate of the body. (*walking, cycling, rowing, swimming, arm ergometer are examples that appear in these protocols*) (9, 11, 13, 20, 26, 28, 29, 36, 41, 47, 58, 67).
- 7) The ability of the arms to retain heat is lower than that of the legs due to the higher surface area to mass ratio. Arms have approximately two times the SA/mass ratio as the legs. (9, 26, 64, 67) (*The majority of recognized swim strokes require higher levels of work from arms than legs even at similar workloads.* (26, p404).
- 8) There is a direct, nonlinear relationship between percent body fat (%BF) and critical water temperature (Tcw) (*Persons with greater % BF have a lower Tcw and therefore can remain longer in the water with less cold stress*)(3, 4, 7, 8, 9, 16, 24, 25, 28, 34, 35, 38, 42, 44, 49, 53, 59, 60, 62, 64, 65)
- 9) Performance is affected by water temperature extremes. (46, 47, 50, 64)

It is apparent from these studies that certain temperatures are well outside the range of comfort and therefore inappropriate for swimming instruction. Thus it becomes necessary to find a narrower range for thermal comfort. This can be accomplished by first looking at water temperatures that illicit little or no cold stress responses (head-out, at rest) and work to identify a range of temperatures appropriate for swimming (head- in) and learning to swim at different levels of intensity and for durations appropriate for LTS programming.

The Lower Limits of Thermal Comfort

A number of studies have used a three hour immersion (head-out) protocol to established "critical water temperature (Tcw)", defined as the lowest water temperature that an unprotected subject can tolerate at rest without shivering. Sagawa et al. (1988) studied 6 men immersed to the neck (%*BF not given*) and found Tcw to be 31.2 ± 0.5 °C. Ferretti et al. (1988) also used a 3 hour immersion protocol to establish an individuals' Tcw and then used Tcw - 6°C to study the effect of exercise (head out immersion) on thermoregulation. Park et al. (1984) established Tcw for their subjects at between 28-32°C before looking at body insulation as it relates to exercise in cool water. Iwamoto et al. (1988) used a 2 hour protocol to establish Tcw. Critical water temperature was established at 32 ± 0.4 °C for 9 healthy men with 15.3 ± 1.2 % BF. Bullard and Rapp (1970) suggest that the average Tcw is around 33°C. Cannon and Keatinge (1960) tested men immersed head-out, at rest in increasingly colder water until Tre fell steadily after 2.5 hours and found that metabolic rates increased in water lower than 33°C.

Most LTS programs have a 30 -45 minute class time limit, so a 2-3 hour immersion study may not seem relevant to our discussion. However, the importance lies in considering that instructors may be teaching back to back lessons without re-warming. Studies whose protocols involve shorter (60 minutes or less) durations will have more relevance in establishing guidelines for participants. Carlson et al. (1958) who found that men immersed to the neck for 60 minutes began shivering when water temperatures dropped 2-3°C below control (33°C). Craig and Dvorak (1966) studied men immersed head-out, at rest and found that when water temperatures were below 35°C for a duration of 60 minutes, Tre was lower than for control values. Strong et

al. (1985) found that males immersed horizontally at rest in water at 35° C and 32° C for 1 hour at a time showed similar metabolic responses when compared to pre-immersion values. These studies support recommending water temperatures for inactive adults with wide variations in % BF and surface area to mass ratio who are immersed to the neck for an hour in the range of 28 - 35° C.

Again, these temperatures represent a range for inactive, head-out adults but the true challenge of thermoregulation in the water is when the body is fully immersed (submersion) as in swimming, free diving or SCUBA diving. Head submersion increases the cooling rate of the body (22, 51, 52). Pretorius et al. (2006) studied 8 male subjects in Tw at 17°C under four separate conditions; 1)head- out body insulated, 2)head-out, body not insulated, 3)head submerged, body insulated and 4)head submerged, body not insulated. They found that the head which accounts for only 7% of the surface area of the body contributed only 10% of the total body heat loss. However, head submersion increased the cooling rate by an average of 42%. Giesbrecht et al. (2005) reported an increase in body cooling by as much as 40% with head submersion as compared to head-out immersion.

It would seem intuitive that for swimming, thermal comfort may require a higher range of temperatures. However, previous studies have confirmed that a number of factors influence heat loss during immersion. The most significant of these are subcutaneous fat thickness, surface area to mass ratio and immersion at rest versus with exercise, with particular respect to exercise intensity. Therefore, it is important to consider the influence of these factors before establishing guidelines for swimming programs.

The role of subcutaneous fat and surface area to mass ratio

Numerous studies have demonstrated the role of subcutaneous fat thickness in managing cold stress. (3, 4, 7, 35, 42, 47, 54, 59) Body fat has a low thermal conductivity and therefore helps retain body heat (38). Individuals with low %BF cool more quickly than those with high %BF when immersed in cool / cold water. Cannon and Keatinge (1960) found that thin men had a steeper rise in MR (an indication of shivering) than fat men. Wade et al. (1979) reported on men immersed at rest lying on a cot in water at 25.2°C and found a significant correlation between heat flow from the head, neck and torso and subcutaneous fat thickness. Smith and Hanna (1975) determined that the range of Tcw (29 - 31°C) for 14 male subjects was a result of the differences in subcutaneous fat thickness.

Although subcutaneous fat provides significant insulation, body size, (surface area to mass ratio) has also been found to contribute to body heat loss (17, 38, 41, 49, 54, 62, 65). Beckman and Reeves (1966) showed that the rate of heat loss is a function of the amount of surface area exposed to the water and the relative thermal conductivity of that area. Strong et al. (1985) found that small individuals demonstrate a greater increase in tissue insulation and metabolic heat production per decrease in Tre and Tsk than large individuals. This holds true for the amount of surface area exposed to the water as well as the surface area to mass ratio of the extremities. Sagawa et al. (1988) reported that resting heat loss was greater in the limbs than the trunk. Lee et al. (1997) studied men immersed at knee, hip and shoulder levels and found that thermal balance in shoulder level water was not possible in water at 15 or 25°C.

8

The role of exercise

There is little doubt that at certain temperatures exercise contributes to thermoregulation (13, 26, 32, 36, 43, 44, 50, 57). When a person begins exercising in the water, heat from the working muscles helps maintain thermal balance. To what degree depends not only on the temperature of the water, but to a great degree on the type of exercise and the intensity of the effort (determine as a percentage of VO_{2max}).

There is an inverse relationship between water temperature and the intensity of exercise needed to attain / maintain thermal balance. In general, the colder the water (to a point), the higher the intensity needed to maintain thermal equilibrium (13, 32, 43, 44, 58, 66, 67). However, there are also temperatures below which no amount of exercise can keep the core temperature from dropping (26, 27, 32, 41).

Exercise intensity can be expressed in a number of ways, as a percentage of VO_{2max} , in energy equivalents such as METs (metabolic equivalents), milliliters per kilogram per minute, liters per minute, kcal per kilogram per hour and kcal per minutes. Each of these is based on a persons' body weight and therefore difficult to compare from study to study. For the purpose of this discussion we will identify each effort as light, moderate and hard work to simplify comparison when possible.

With light exercise, the range of comfortable temperatures for head out immersion seems to vary between 26 and 32°C. Lee et al. (1997) found that light exercise (leg cycling at 35% VO_{2max}) did not maintain Tre in shoulder depth water at 25°C. Choi et al. (1996) studied subjects on a bicycle ergometry at MR corresponding with 60 kcal·h⁻¹·m⁻² (very light workload). For most subjects in this study, Tre declined in water below 30°C whether during rest or exercise. Craig and Dvorak (1968) reported that during light (.70 l/min) leg work, Tre continued to decline when water was less than 32°C. Pirnay et al. (1997) reported that subjects in their study were able to maintain thermal balance with light and moderate exercise in 26°C. With moderate workloads, it seems that most adults can maintain thermal equilibrium at approximately 25°C for efforts of 30 to 60 minutes (32, 44, 58)

The type of exercise performed in the water is also a variable in thermoregulation. The types of exercises representative of the "head-out" immersion studies include arm exercise such as rowing, or arm cycle ergometry (66, 67), leg exercise, the most common of which is a cycle ergometry (9, 13, 26, 32, 41, 44, 50, 65) and a combination of leg and arm exercise (28, 43, 49, 67). It seems that leg exercise results in a smaller fall of Tre with cold immersion or maintains thermal balance when compared to arm exercise at the same level of effort (26, 49, 66, 67).

Efficient swimming requires head submersion and a greater use of the arms. Wade and Veghte (1977) used radiograms to study heat loss areas in swimming subjects in 23°C water. The warmest areas recorded for the non immersion control were in the chest, groin, lower abdomen and neck. After a 500 yard freestyle swim, the warmest areas were the trapezius, deltoids, triceps, biceps brachii and the pectorals (the active swimming muscles). The legs, however, remained cooler. Considering that swimming is a predominantly upper body exercise, it would

seem intuitive that temperature ranges for efficient swimming might be somewhat higher especially when compared to ranges for leg dominant, head-out, water exercise protocols.

In swimming (freestyle and breaststroke) research, the most common temperatures in literature are 18°C (30, 47, 64), 21°C (21, 31, 54, 56), 25°C (39, 54, 64, 74), 26°C (11, 30, 46, 47) and 33°C (20, 21, 31, 48, 56, 75). These temperatures have been studied to establish the range for competitive swimming and /or to identify a range of temperatures that affect swimming performance. As would be expected from previously reviewed immersion literature and with all things being equal (surface area to mass ratio, subcutaneous fat thickness and duration of immersion) temperature ranges for swimming are dependent on swimming intensity (30, 31, 47).

Fujishima et al. (2001) looked at thermoregulatory responses to prolonged (120 minutes) breaststroke in 23, 28 and 33°C. Subjects swam at 50% VO2max in 23°C water, 43% VO2max in 28°C water and at 42% VO2max in 33°C. Tres declined in both 23 and 28°C and increased in 33°C water. Robinson and Somers (1971) looked at swimmers swimming freestyle for 60 minutes in water 21, 29 and 33°C. They reported that in 21°C the Tre of the slowest swimmers declined and the average Tre of the fastest swimmers increased slightly. They suggested that optimal water temperature for swimmers was nearer 29°C because at that temperature core and surface temperature gradients were adequate for heat conductance. The findings of Nadal et al. (1974) agree. They suggest that the optimal water temperature for sprint performance is between 28 and 30°C.

Houston et al. (1978) studied male subjects swimming breaststroke for an hour at 65% VO2max in 21, 27, and 33°C. Core and esophageal temperatures tended to rise in 27°C and decreased by a similar magnitude in 21°C. They suggested that competitive swimmers might benefit from the thermal stress presented by 21°C but that recreational swimmers might need at least 27°C to maintain thermal equilibrium. Galbo et al. (1979) confirms these findings. Subjects in this study reported that it was more difficult to swim in 21 and 33°C as compared to 27°C water. In Holmer and Bergh (1974) subjects swam breaststroke in three different water temperatures (18, 26 and 34°C) with two different intensities. They performed a 20 minute submaximal (approximately 50% VO_{2max}) effort for 20 minutes and then a maximal test in each water temperature. For all maximal efforts Tes rose exponentially. Tes was lower for both 18 and 26°C with submaximal effort for 20 minutes.

It would appear that water temperature for thermal comfort during light to moderate swimming intensities can range from 27 - 32°C. For maximal efforts that range can vary from 18 - 30°C. Keep in mind that these studies were done with adult subjects. These ranges will need to be adjusted based on age and possibly gender.

Gender and age

Adjustments to cold exposure have been found to differ with age and gender (10, 15, 18, 40, 43, 59, 61, 71, 72). Though reasons for this cannot totally be explained, it is clear that children and older adults chill faster than young and middle aged adults and males chill faster than females. Falk (1998) suggests that physical and physiological differences may explain some of the age related adjustments to cold exposure. The two most significant physical differences are surface

area to mass ratio and %BF. Children have a higher surface area to mass ratio than adults which increases heat loss. In many instances, young to middle aged adults have a higher % body fat. Both of these physical factors have been shown to increase the cooling rate of children over adults (59, 61, 71).

When comparing young adults (18-30) to older adults (50-72), physiology seems to play a greater role than the physical factors. Falk et al. (1994) compared young adults to trained and untrained seniors at Ta thermoneutral (22°C) and Ta 5°C for 30 minutes at rest and 30 minutes of exercise. Young adults were able to maintain Tre with low intensity exercise, trained and untrained seniors were not. Collins et al. (1985) found that older adults had a significantly greater increase in blood pressures at Ta 6°C than younger adults. LeBlanc et al. (1978) found a significant relationship between VO_{2max} and a fall in skin temperature. They found that subjects with lower VO_{2max} could account for some of the age related differences in cold stress responses. Frank et al. (2000) supports this hypothesis.

The Upper Limits of Thermal Comfort

There are warm water temperature limits for thermal comfort as well. Veicsteinas et al. (1982) found that vasodilation (heat dissipation) occurred at water temperatures between 32 -33°C in men immersed head-out at rest for 3 hours. Craig and Dvorak (1966) reported that when water temperature was 36 or 37°C, men showed a continuous increase in the central temperature. Tre also increased with a high work load in 28 - 32°C water. Participants in this study reported feeling most comfortable in 34-36°C and feeling tired and restless at 37°C.

Shimizu et al. (1998) found that Tre rose significantly at 29°C with exercise at 50% VO2 max. Pirnay (1997) also found that sub max levels of exercise (approximately 50% effort) caused hyperthermia in water \geq 30°C. Costill's (1967) findings (20 minutes of submaximal swimming) suggest that if a person is immersed in water below 32°C he/she will become hypothermic at a rate proportional to the duration of immersion or the difference in the thermal gradient below 32°C.

It would seem appropriate than to have temperature ranges for Aquatic Instructional programs adjusted based on activity level and age of the participant. Younger children and older adults need warmer water for thermal comfort and balance. The lower the intensity of the effort, the higher will be the accepted ranges. Participants learning to swim (low intensity or limited activity) need warmer water than more proficient swimmers, participating at a higher level of intensity. The duration of the lesson will have to be based on the other parameters and also be related to current thoughts about learning theory.

Summary:

In summary, the weight of the evidence suggests that for each person there is a water temperature range in which he/she is most comfortable at rest and at different levels of exercise

intensity. The number of possible interactions (age, gender, subcutaneous fat thickness, surface area to mass ratio) makes it nearly impossible to set a specific standard for each person / activity in the water and, therefore, only general guidelines will be given.

Based on 9 LOE 2a studies, the recommended water temperature range for adults ages 17-55 immersed with head out of water, at rest, in an indoor pool with controlled humidity and air temperatures for durations ranging from 40 - 120 minutes is 29 - 33°C (84.2 - 91.4F). Adults with either higher subcutaneous fat levels or surface area to mass ratio or both, will tolerate water at the lower end of the range for longer periods of time.

Based on 11 LOE 2a studies, the recommended water temperature range for adults ages 17-55 in an indoor pool with controlled humidity and air temperatures for durations ranging from 20 - 120 minutes of swimming at low intensities is $29^{\circ} - 32^{\circ}C$ ($84.2^{\circ} - 89.6^{\circ}F$). Adults with either higher subcutaneous fat levels or surface area to mass ratio or both, will tolerate water at the lower end of the range for longer periods of time.

Based on 11 LOE 2a studies, the recommended water temperature range for adults ages 17-55 in an indoor pool with controlled humidity and air temperatures for durations ranging from 20 - 120 minutes and swimming at moderate (at least 50% effort) to high intensities is $26^{\circ} - 28^{\circ}C$ (78.8°- 82°F). Adults with either higher subcutaneous fat levels or surface area to mass ratio or both, will tolerate water at the lower end of the range for longer periods of time

Based on 11 LOE 2a studies, the recommended water temperature range for adults ages 17-55 in an indoor pool with controlled humidity and air temperatures for durations ranging from 15 - 135 minutes head out exercise at low to moderate intensities is $26^{\circ}-28^{\circ}C$ (78.8°- $82^{\circ}F$). Adults with either higher subcutaneous fat levels or surface area to mass ratio or both, will tolerate water at the lower end of the range for longer periods of time

Based on 31 LOE 2a studies, the recommended maximum water temperature range for adults ages 17-55 in an indoor pool with controlled humidity and air temperatures for durations ranging from 15 - 135 minutes at rest or with low intensity exercise is $\leq 32^{\circ}$ C (89.6°F). Adults with either higher subcutaneous fat levels or surface area to mass ratio or both, may not tolerate water at 32°C (89.6°F) for long periods of time. Watch for signs of hyperthermia. (For moderate (at least 50% V0_{2max}) or higher intensities water temperature should not exceed 27°C (80.6°F)

Overall Recommendation:

Water temperature is a major factor in participant comfort and overall success of any "Aquatic Instructional" program. Water that is too cold can lead to chilling and discomfort and result in limiting the time spent on necessary practice. Likewise, water too hot can lead to overheating and discomfort in limiting the time spent on necessary practice. In summary, the weight of the evidence suggests that for each person there is a water temperature range in which he/she is most comfortable at rest and at different levels of exercise intensity. The number of possible interactions (age, gender, subcutaneous fat thickness, surface area to mass ratio) makes it nearly impossible to set a specific standard for each person / activity in the water and, therefore, only general guidelines will be given. The most important factor is that Aquatic Instructors are able to recognize when a student needs to end an in or out water session because the early onset of temperature related issues regardless of water temperature.

Recommendations and Strength:

Standards: None

Guidelines:

In a controlled environment (defined as an indoor pool with controlled humidity and air temperature), and with most of the consideration given to the level of intensity of the activity (as the activity intensity increases thermal balance can be achieved at the lower end of the range) and the immersion time (as immersion time increases core temperature decreases)

Infant / preschool aquatics (20 to 30 minutes*) Water temperature - water temperature should be ≥32° C (89.6° F)
Learn to swim up to ages 6- 15 (30 to 45 minutes*) Water temperature - water temperature should be $\ge 29^{\circ}$ C (84.2° F)
unior Lifeguard ages 11-14 (45 to 60 minutes*) Water temperature water temperature should be ≥29° C (84.2° F)
Lifeguard training up to ages 15 – 55 (60 to 120 minutes*) Low intensity activity-water temperature should be 29° to 32°C (84.2° to 89.6 F) Intense activity – water temperature should be 26° to 28° C (78.8° to 82° F)
Water Safety Instructor up to ages16- 55 (60 – 120 minutes*) Low intensity activity-water temperature should be 29° to 32°C (84.2 ° to 89.6°F)

Intense activity – water temperature should be 26° to 28° C (78.8° to 82° F)

13

* Student immersion time per session.

Options:

Instructors should watch for signs of hypothermia or hyperthermia as an indication that it is time to end the session. For water temperatures below the recommended ranges the following options are suggested:

- 1) Add clothing that does not compromise safety
- 2) Covering the head that does not compromise safety
- 3) Limit the amount of time in the water

Summary of Key Articles/Literature Found and Level of Evidence:

	Author(s)	Full Citation	Summary of Article (provide a brief summary of what the article adds to this review)	Level of Evidence
1	American National Red Cross	Water Safety Instructor Manual. American National Red Cross 2009	 p. 115 "Maintain a water temperature of at least 83°F (28.3°C)". p. 148. "Typically, water temperature that is at least 83°F (28.3°C) is more comfortable for young children". 	5
2	Aquatic Exercise Association	2010 Standards & Guidelines: Aquatic Fitness Programming. Aquatic Exercise Association 2010	p.3 "Children, fitness 83-86F / 28.3 – 30C" "Children, swim lessons 84+F/ 28.9+C *Varies with age, class length, and programming; ideal learn to swim programs is best suited for 84- 89F / 28.9-31.7C when available" "Infant programs (4 and under) 90-93F / 32.2 – 33.9C * (USA Swimming)	5
3	Beckman EL, Reeves E	Physiological implications as to survival during immersion in water at 75° F. Beckman EL, Reeves E. Aerospace Medicine. Nov. 1966, 1136- 1142	N=24 males were immersed to the neck in a life vest in water @ 75°F for 2-4 hours, 4-8 hours or 8-12 hours. Only 6 subjects completed the full 12 hours. The rate of body heat loss is directly related to specific gravity and inversely related to %BF. Rate of heat loss is primarily a function of the area of the body exposed to the cold water and the thermal conductivity of that area. Adipose tissue has a lower thermal conductivity than muscle and skin. Subjects with the lowest specific gravity were the ones who stayed in the water for the full 12 hours.	2a
4	Boutelier C, Bougues L, Timbal J	Experimental study of convective heat transfer coefficient for the human body in water. Boutelier C, Bougues L, Timbal J, J Appl Physiol:: Respirat Enviorn	N= 17 male subjects were immersed supine with the face out in water ranging from 33.7 to 18° C at water velocities between 0 and 0.25 m/s. The skin to water (Δ T) gradient decreases when water velocity increases.	2a

		Exercise Physiol 1977. 42 (1): 93-100	Shivering intensity at the same water velocity and temperature conditions varies with the fat layer thicknesses of the subjects	
5	Bullard RW, Rapp GM	Problems of body heat loss in water immersion. Bullard RW, Rapp GM. Aerospace Med.1970 41(11): 1269- 1277.	the subjects. This is a review article using a model for developing concepts of heat loss in water immersion. Heat energy flows down the temperature gradient (Tc – Tsk followed by Tsk – Tw) from trunk to extremities to the cooler water. The flow of heat energy is resisted by body structural components and aided by blood circulation. The resistance to heat flow is very low when compared to air and becomes even lower if water and skin are in motion with respect to each other. A thermogenic response occurs by lowering temperatures. Metabolic rate increases (shivering theromogensis). Any type of muscle activity (exercise) by the extremities increases heat conductance (k) because blood flow increases to the exercising limbs and there is more surface area to dissipate heat. The average critical water temperature (Tcw) is around 33°C. There is a great deal of variation found in immersion experiments. Subcutaneous fat accounts for a major portion of such variation. Physical condition determines the ability to maintain a high metabolic rate and attain thermal equilibrium.	2a
6	Cabanac, M	Temperature Regulation. Cabanac, M. Annual Rev Physiol 1975 37: 415-439	The term "temperature regulation" means that there are mechanisms defending the temperature of one or several definable regions of the body. Basic patterns of thermoregulatory responses include a) heat production through shivering and other metabolic processes and b) vasomotor responses resulting in heat transfer from core to skin and, in turn, of heat loss to the environment. It has been confirmed in	2a

			experimental studies that skin vaso constriction is a cold defense reaction and skin vasodilation as a warm defense reaction were compensated by simultaneous opposite responses in the thermal core. In man, direct measurement of hypothalamic temperature is not possible, nor is independent stimulation of various internal sensors. Thus, the only combination that can be investigated in man is the interaction between mean Tsk and internal Tre or Tcore temperatures	
7	Cannon P, Keatinge WR	"The metabolic rate and heat loss of fat and thin men in heat balance in cold and warm water." Cannon P, Keatinge WR, J Physiol 1960 154: 329-344	The purpose of this study was to determine whether work assisted in maintenance of Tb in water too cold to maintain thermal equilibrium while stationary. N = 8 healthy navy men ages 17-21, wearing a fleece lined helmet covering much of the face and immersed to the shoulders at progressively lower temperatures until Tre fell steadily after 2.5 hours. Five men were then immersed at the next lowest temperature and told to work as hard as they could. Metabolic rate of each man began to increase when Tw was lowered below 33°C. Rise in MR was steeper for thin vs fat men. For the 5 subjects immersed in the lower Tw, Tre fell more rapidly during work than at rest.	2a
8	Carlson LD, Hsieh ACL, Fullerton F, Elsner RW	Immersion in cold water and body tissue insulation. Carlson LD, Hsieh ACL, Fullerton F, Elsner RW. Aviation Medicine, February 1958 145-152.	N= 9 men immersed to the neck for one hour in 33, 25 and 20°C. Oxygen consumption with temperature drop indicates that subjects with a decrease in insulation began shivering between 4-5 minutes after the bath temp dropped 2-3°C (from 33°C). Body insulation varied with specific gravity.	2a
9	Choi JS, Ahn, DW, Choi JK, Kim KR, Park	Thermal balance of man in water: prediction of deep body temperature change.	N = 12 healthy males with SCF of between 2.4 to 8.0 mm. Subjects were dressed in swim suits and immersed up	2a

	YS	Choi JS, Ahn, DW, Choi JK,	to the neck in Tw @ 15,20,25,30 or	
		Kim KR, Park YS. Appl	35° C for 1 hour. An external	
		Human Sci 1996; 15(4):	workload that could increase MR by 60	
		161-167.	kcal· h^{-1} · m^{-2} was established	
			empirically. Tre fell linearly with time	
			after approximately 20 min. Rate of	
			fall was greater with lower	
			temperatures.	
			During exercise on a bicycle	
			ergometer, Tre remained the same for	
			the first 15 minutes and then declined	
			steadily. At any given Tw, the deep	
			body cooling rate was significantly	
			lower during exercise than at rest. The	
			general patterns of cold immersion	
I			responses were similar but varied	
			considerably with %BF.	
			For most subjects in this study Tre	
			declined in Tw below 30°C, regardless	
			of whether they were resting or	
			exercising. In the present study the	
			cooling rate was considerably smaller	
10	Calling VI	Effects of each on hody	with exercise than at rest. $N = 0$ subjects (5 in age range 62.70)	2a
10	Collins KJ, Easton JC,	Effects of age on body temperature and blood	N = 9 subjects (5 in age range 63-70 and 4 in age range 18-24 years) were	2a 2aE
	Belfield-Smith	pressure in cold	exposed to Ta @ 6, 9, 12, 15, and	ZaĽ
	H, Exton-Smith	environments. Collins KJ,	23° C. (air blown over the body surface	
	AN, Pluck RA	Easton JC, Belfield-Smith H,	at 0.5 m/s) four hours/day for 7-10	
		Exton-Smith AN, Pluck RA.	days. Subjects wore standard open-	
		Clinical Science 1985; 69:	collar battledress, shirt, underclothes	
		465-470	and civilian shoes (1.5 CLO) and	
			remained seated during the exposure.	
			There was no evidence of acclimation	
			in either group. The fall in core	
			temperature was significantly greater at	
			6°C for older than younger subjects.	
			No significant differences of thermal	
			comfort sensation were found @ Tw	
			15, 12, 9 and 6°C.	
			There was a significant increase in BP	
			@ 6°C and was greater in old than in	
			the young. At 15°C there were no	
			significant changes in BP in either	
			group. HR decreased sharply over the	
			first 15 minutes for the young in 6°C,	

			with older subjects experiencing a steady falling HR in 6 and 12°C. At 15°C, there were no significant HR changes in either group.	
11	Costill D L, Cahill PJ, Eddy D	Metabolic responses to submaximal exercise in three water temperatures. Costill DL, Cahill PJ, Eddy D. J Appl Physiol. 1967 22(4): 628-632	In Tw 17.4°, 26.8° & 33.1°C, 8 men, (mean age 21.13, mean %BF 7.7) participated in submaximal swimming for 20 minutes. Tsk during exercise remained higher than Tw in all cases but thermal differential was inversely related. Mean Tre increase during exercise was greatest @ 33.1°C and least @ 17.4°C. Tre decreased during recovery more rapidly in 17.4°C than in 26.8°C. Tre decrease at 17.4 was lower than pre-immersion Tre.	2a
12	Craig AB, Dvorak M	Thermal regulation during water immersion. Craig, A B, Dvoak M. J Appl Physiol, 1966 21(5): 1577 1585	N= 10 men immersed for one hour, semi recumbent with water just below the chin in Tw @ (24, 26, 28, 30, 32, 34, 36 and 37°C. When Tw was 36 or 37°C, there was a continuous increase in central temperature. In Tw @ 35°C or lower, Tc were below control values at the end of 60 minutes. In Tw @ 30°C or less, there was an initial rise in Tre. V0 ₂ would increase in water less than 30°C if time was approximately 40 minutes or less. Subjective observations: subjects were most comfortable in 34-36°C; tired and restless at 37°C; cold initially at 30 and 32°C but feelings passed in the first 3-5 minutes; 28°C seemed the hardest to tolerate; 24 and 26°C didn't seem so difficult after initial responses to immersion.	2a
13	Craig AB, Dvorak M	Thermal regulation of man exercising during water immersion. Craig AB, Dvorak M. J Appl Physiol 1968. 25 (1) 28-35.	N=10 male subjects exercised at two workloads (light =.70 l/min; heavy .92 l/min) on a bicycle ergometer nearly horizontal, and immersed with the head out in Tw @ 24, 26, 28, 30, 31 and 32°C. With light work, Tre continues to decline in Tw less than 32°C. At high workload the initial decrease in Tre was followed by an increase when	2a

				1
			water temperature was 28-32°C.	
			With light workload the Ts necessary	
			to prevent Δ Tre would be 34°C for	
			subjects whose heat production is	
			approximately 2.5X resting. For heavy	
			workloads, an equivalent Tw would be	
			approximately 29°C.	
14	Falk B	Effects of thermal stress	This is a review of age related	3
		during rest and exercise in	differences in the human	
		the paediatric population.	thermoregulatory system. Physical	
		Falk B, Sports Med 1998	and physiological differences between	
		Apr; 25(4): 221-40	children and adults may explain the	
		ripi, 25(1). 221 10	differences in thermoregulation. The	
			main physical difference is the higher	
			surface area-to-mass ratio of children.	
			This increases heat loss. The main	
			physiological difference btw adults and	
			children is the sweating mechanism,	
			affecting thermoregulation in the heat	
			but not in the cold. Children have a	
			higher metabolic cost of locomotion	
			that may be advantageous in the cold	
			by increasing heat production.	
			In Tn temperatures, children have	
			similar rectal temperatures but higher	
			skin temps. In a cold environment,	
			children have lower skin temperatures	
			as compared to adults, indicating	
			greater vasoconstriction. Metabolic	
			heat is also greater in the cold for	
			children than adults.	
15	Falk B, Bar-or	Response to rest and	N = 3 groups of healthy men: 1) 8	2a
1.5	O, Smolander J,	exercise in the cold: effects	young adults (YA), ages 21-29, 2) 8	2u
	and Frost G	of age and aerobic fitness.	well trained seniors (TS), ages 55-66	
		Falk B, Bar-or O, Smolander	and 3) 11 untrained seniors (different	
		J, and Frost G. J Appl Physical 1004 76(1): 72 78	VO _{2max} than TS) with no significant	
		Physiol, 1994. 76(1): 72-78	differences in anthropometric	
			measures. Subjects were exposed to 20	
			minutes @ themoneutral (22°C), 10	
			minutes at rest and 10 minutes cycle at	
			a pre-determined work rate	
			(approximately 50 W which is	
			equivalent to most occupational	
			activities). After 1-hr of rest they were	
			exposed to 5°C for 30 minutes of rest	
	•		· ·	

16	Farnell G, Pierce J, Demes R, Collingsworth T, Ryan EJ, Bellar D, Bliss MV, Barkley JE, Kamimori GH, Glickman EL	Effects of body composition on thermoregulatory responses during cold water immersion in healthy males. Farnell G, Pierce J, Demes R, Collingsworth T, Ryan EJ, Bellar D, Bliss MV, Barkley JE, Kamimori GH, Glickman EL. Med Sci	and then 30 minutes at the same work rate as the thermoneutral trial. The findings in this study show an age- related diminished ability to maintain core temperature during rest and low intensity exercise in the cold. YA were able to maintain Tre with this work rate but TS and US were not. N= 6 low fat (LF, 10.1±1.4%BF) and 5 high fat (HF, 28.1±3.5%BF) were immersed to the neck in water @ 18, 22, 26°C for a baseline of 10 minutes, followed by 120 minute immersion and a 15 minute re-warming period on a cycle ergometer. LF subjects had a greater decrease in Tre and greater increases in V0 ₂ over time compared with HF subjects. High	2a
		Sport Exercise, 2008 40(5):S228	fat subjects tolerated cold water immersion more efficiently and effectively than LF individuals.	
17	Ferretti G, Veicsteinas A, Rennie, DW	Reginal heat flows of resting and exercising man immersed in cool water. Ferretti G, Veicsteinas A, Rennie DW. J Appl Physiol 1988, 64(3): 1239-1248	N= 9 men immersed to the neck in Tw ranging from 22-32°C. This study included 3 Protocols: 1) 3 hours at rest @ Tw below Tcw 2) 3 hours with light exercise (30% V0 _{2 max} and 3) 3 hours with heavy exercise @ Tw below Tcw (70% V0 _{2max}). Subjects were only able to remain immersed 80- 170 minutes due to onset of shivering. The temperature at which thermal balance is reached in a 3 hour immersion is Tw = Tcw + 1.5°C Exercise in the water may increase core temperature depending on the intensity of the exercise, body obesity, area to body weight ratio and whether or not the limbs are being exercised. There is a preferrential heat exchange from the limbs to water because of the greater percentage of total body area in comparrison to the trunk. Circulation to the limbs is reduced to a minimum in Tcw.	2a

18	Frank SM, Jaja A, Bulcao C, Goldstein DS.	Age-related thermoregulatory differences during core cooling in humans. Frank SM, Jaja A, Bulcao C, Goldstein DS. Am J Physiol, 2000; 279: R349-354	N = 8 younger subjects (18-23) and 8 older subjects (55-71) were given a cold fluid intraveneously over a period of 30 minutes to compare Tre thresholds for vasoconstriction, heat production (shivering) and perceived thermal comfort among other things. Older subjects had a significantly greater %BF. Maximum intensities of both vasoconstriction and total body O^2 consumption were less in the older group. Mean maximum shivering score was lower in the older group. Subjective thermal comfort scores were similar in the two age groups despite the lower Tc in the older group. The results indicate that all three major cold responses are in some way impaired with age.	2a
19	Froese G and Burton AC	Heat losses from the human head. Froese G and Burton AC. J Appl Physiol 1957, 10(2): 235-241	This study measured the nonevaporative heat loss of $N = 3$ subjects, with unprotected heads but adequately clothed bodies, at temperatures between 32° C and -21°C. The tissue insulation of the head apprears to be constant over a wide range of temperatures. The findings support the point that there is little or no vasoconstriction in the head in repsonse to cold. It can be estimated from this study that for an average resting subject, the heat balance of the head (heat loss balanced by heat production) occurs at around 22°C (71.6°F).	2a
20	Fujishima K, Shimizu T, Ogaki T, Hotta N, Kanaya S, Shono T, Ueda T	Thermoregulatory responses to low-intensity prolonged swimming in water at various temperatures and treadmill walking on land. Fujishima K, Shimizu T, Ogaki T, Hotta N, Kanaya S, Shono T, Ueda T. J Physiol Anthropol, 2001 20(3):199- 206	N=6 male college swimmers (age 19.8±0.9 and % BF 13.2±3.4) swam 120 minutes of breaststroke in a swim flume at a constant speed of 0.4m/sec- 1, (approximately 50% VO ₂ max @ 23°, 43% max @ 28° and 42% max @ 33°C). Tre steadily declined and was significant after 20 minutes @ 23 & 28 Tre during swimming in 23 and 28°C	2a

			decreased significantly compared to temperatures at rest in air. There was no significant change in the 33°C trial compared to air	
21	Galbo H, Houston ME, Christensen NJ, Holst JJ, Nielsen B, Nygaard E, and Suzuki J	The effect of water temperature on the hormonal response to prolonged swimming. Galbo H, Houston ME, Christensen NJ, Holst JJ, Nielsen B, Nygaard E, and Suzuki J Acta Physiol Scand, 1979 105: 326-337	N=6 men swimming breaststroke for 60 minutes at a speed requiring 65% VO _{2 max} (determined in 27°C water) @ 21°, 27° and 33°C. Tre increased significantly in 33° and to a smaller extent in 27°C. Tre decreased in 21°C Swimmers perceived that 21°C was too cold and felt "enclosed in heat in 33°C and found it more difficult to complete the swim at these temps than @ 27°C	2a
22	Giesbrecht GG, Lockhert TL, Bristow GK, and Steinman AM	Thermal effects of dorsal head immersion in cold water on nonshivering humans. Giesbrecht GG, Lockhert TL, Bristow GK, and Steinman AM. J Appl Physiol, 2005 99: 1958- 1964	N = 6 male volunteers were immersed 4 times for up to 60 minutes in 12°C water. An insulated hoodless dry suit or two different floatation devices was used to create four conditions: 1) body insulated, head out, 2) body insulated, dorsal head immersion, 3) body exposed, head and upper chest out, 4) body exposed and dorsal head immersion and chest immersion. When the body was insulated, dorsal head immersion did not affect core cooling rate compared with head-out conditions. When the body was exposed, the core cooling rate increased by 40% from head out condition to dorsal head and upper chest immersed.	2a
23	Glickman EL, Caine-Bish N, Cheatham CC, Blegen M, Potkanowicz ES,	The influence of age on thermosensitivity during cold water immersion. Glickman EL, Caine-Bish N, Cheatham CC, Blegen M, Potkanowicz ES, Wilderness and Environ Med. 2002 Fall; 13(3):194- 202	N = 15 young men (YNG, 18-30 and % BF 10.9 \pm 2.9) and 7 old men (OLD, 40-55 and %BF 13.7 \pm 8.4) were immersed to the first thoracic vertebrae, with limbs separated in Tw @ 20°C for 3 phases over a 60 minute period to determine if there are significant differences in heat production (HP), esophogeal temperature (Tes), mean skin temperature (Tsk), and central	2a

			thermosensitivity (defined as an	
			increase in HP with controlled	
			manipulation of Tes).	
			Tre declined in both age groups at rest	
			in 21°C water.	
			This study found that YNG and OLD	
			subjects responded similarly in all	
			5 I	
24			responses to Tw @ 20°C.	2
24	Glickman-	Physiological and thermal	N = 24 male volunteers, ages 20-35 (12	2a
	Weiss EL, Goss	responses of males with	low fat subjects; 9-12%BF and 12 high	
	FL, Robertson	varying body compositions	fat subjects; 18-22%BF) immersed to	
	RJ, Metz KF,	during immersion in	the first thoracic vertebrae and	
	Cassinelli DA	moderately cold water.	randomly assigned for a 90 minute	
		Glickman-Weiss E L, Goss	immersion in one of 3 Tw (18, 22 or	
		F L, Robertson R J, Metz K	26°C).	
		F, Cassinelli D A. Aviat	After the first 5 minutes, Tsk	
		Space Environ Med 1991,	approached Tw and remained	
		62: 1063-1067	unchanged in both groups.	
			Tre delcined as a function of time and	
			were similare for all subjects at each	
			time pont over the 90 minutes.	
			This investigation demonstrated that	
			•	
			the magnitude of the increase in $V0_2$	
			during cold water immersion is	
			primarily influenced by the	
			physiological characteristics of the	
			subjects. LF subjects typically have a	
			greater 0 ₂ response than HF subjects.	
25	Glickman-	Effects of body morphology	N= 7 males college students (4 with	2a
	Weiss EL,	and mass on thermal	large mass and %BF 14.5±4.1) and 3	
	Nelson AG,	responses to cold water:	with small mass and %BF 16.5±3.5)),	
	Hearon CM,	revisited. Glickman-Weiss	with similar total body fat, were	
	Goss ² FL,	EL, Nelson AG, Hearon	immersed to the first thoracic vertebrae	
	Robertson ² RJ,	CM, Goss ² FL, Robertson ²	for 120 minutes in stirred water @	
	Cassinelli DA	RJ, Cassinelli DA. Eur J	18°C.	
		Appl Physiol. 1993, 66: 299-	Tre declined for all subjects as a	
		303	function of time.	
			Tissue insulation was higher in LM	
			subjects compared to SM subjects	
			(non-significant differences). After 5	
			minutes Tsk approached Tw and	
			remained unchanged for both groups	
			throughout the experiment. There were	
			no differences between groups in V0 ₂	
			response, thermal sensation response or	

				1
			tissue insulation. Differences in	
			surface area to mass ratio did not result	
			in significant differences in heat loss	
			during rest in cold water.	
26	Golden F St.C,	Human thermal responses	N = 15 healthy male subjects (btw ages	2a
	Tipton MJ	during leg only exercise in	17 and 34) performed two 40 minute	
	-	cold water. Golden F St.C,	head-out immersions in Tw @ 15°C.	
		Tipton MJ J Physiol 1987;	One trial was dynamic immersion (leg	
		391-401	exercise on a modified bicycle	
			ergometer, working at the same relative	
			workload; $VO_2 \ 1.8 \ I \ O_2 min^{-1}$) and one	
			static immersion. The results are for	
			the period between minutes 10 and 30	
			-	
			and compare static immersion to	
			dynamic immersion. Mean Tsk did not	
			differ until minute 30 then was higher	
			for static immersion. Tre fell by a	
			greater amount in static v dynamic	
			immersion. The 'leg-only' exercise in	
			this study resulted in smaller falls in	
			Tre when compared to an equivalent	
			static immersion.	
27	Hayward JS,	Thermographic evaluation of	4 male subjects were immersed in	2a
	Collis M,	relative heat loss areas of	7.5°C water for 15 minutes, at rest	
	Eckerson JD	man during cold water	(holding a life ring) and swimming a	
		immersion. Aerosp Med	"semi-backstroke" with a sculling	
		1973 Jul; 44(7): 708-711	motion of the arms.	
			In all instances, the warmest areas were	
			the trunk and upper arms. The legs	
			were generally cooler. It appears that	
			the greatest heat loss areas during static	
			immersion are the lateral thorax, upper	
			chest and back and groin. During	
			swimming there was higher heat loss in	
			those same areas.	
20	House MC	Roles of subcutaneous fat		2.
28	Hayward MG,		N = 14 adult men and women, ages 18-	2a
	Keatinge WR	and thermoregulatory	27 were repeatedly immersed in water	
		reflexes in determining	(including a water spray over the head	
		ability to stabilize body	to simulate total immersion) in	
		temperature in the water.	decreasing water temperatures until Tre	
		Hayward MG, Keatinge	stabilized or dropped below 35°C.	
		WR. J Physiol. 1981, 320:	After establishing the lowest Tw at	
		229-251	rest, subjects performed a rowing type	
			motion while pedaling a bicycle during	
	1	1	a 30 minute immersion. The lowest	

			Tw in which different young adults	
			could stabilize Tb was found to vary	
			from 32° C to less than 12° C (due to	
			large differences in both total body	
			insulation and metabolic heat	
			production). Total body insulation per	
			unit surface area, in the coldest water	
			allowing stability, was quite closely	
			determined by mean subcutaneous fat	
			thickness, regardless of differences in	
			distribution of fat between men and	
			women. At rest, subjects with larger	
			SCF thickness could generally stabilize	
			Tb in colder water. Exercise reduced	
			internal insulation only in muscular	
			parts and increased heat loss by	
			-	
20	11110		exposing more skin surface.	2
29	Hayward JS,	Thermal balance and	N=6 male and 6 female subjects ages	2a
	Eckerson JD,	survival time prediction of	19-29, immersed at rest with a Kapok	
	Collis ML	man in cold water. Hayward	vest and light clothing in Tw@ 4.6,	
		JS, Eckerson JD, Collis ML.	10.5 and 18.2°C and slow swimming	
		J Physiol Pharmacol 1975	@ 10.5°C for 25-60 minutes	
		53: 21-32	(determined by Tw and limited by Tre	
			of 35.0°C or less).	
			Hypothermia resulted in all conditions	
			while at rest. Hypothetic zero heat	
			production occurs at Tw 38°C and is	
			less than 1°C greater than actual Tre.	
			Extrapolation of this regression to zero	
			cooling rate occurs at Tw 23.1°C	
			(critical temperature). Cooling rate	
			was found to be 35% higher while	
20			swimming at 10.5°C.	2
30	Holmer I, Bergh	Metabolic and thermal	N = 5 swam at 50% VO ₂ max	2a
	U	responses to swimming in	(determined by max test) for 20	
		varying temperatures.	minutes in water @ 18°, 26° and 34°C	
		Holmer I, Bergh U. J Appl	and then performed a test at maximum	
		Physiol. 1974 37(5): 702-	intensity.	
		705	Tes rose exponentially in 26 and 34°C	
			with maximal work.	
			Tes rose in 34°C for the submaximal	
			test and was lower in 18°C in 4 of 5	
			subjects.	
			Tes in 18° and 26°C was found to be	
			related to the thickness of	
			Terated to the unexhess of	

	I	1		1
			subcutaneous fat.	
			The leanest subject (%BF 3.8) could	
			not sustain Tes with submaximal work	
			in 26 or 18°C. Subjects whose %BF	
			was \geq 6.2 maintained Tes in 26°C with	
			submaximal work.	
			This study shows that there is a temp	
			that is best for each person but for	
			leaner subjects it is higher than 18-	
			20°C.	
31	Houston ME,	Metabolic responses to	N = 6 male subjects swam in Tw @ 21,	2a
_	Christensen NJ,	swimming at three different	27 and 33°C, for 1 hour using	
	Galbo H, Holst	water temperatures. In	breaststroke at a speed that equated to	
	JJ, Nielsen B,	Eriksson B, Furberg E, eds.	65% of their swimming VO _{2 max} .	
	Nygaard E,	Swimming Medicine IV.	Tc and Tes tended to rise in Tw @	
	Saltin B	University Park Press, 1978.	27°C and decreased by the same	
		Baltimore, 327-333	magnitude in Tw @ 21°C. Both Tc	
		Datumore, 327-355	and Tes rose in 33°C water. HRs for	
			swimming gradually increased over	
			time for Tw 27 and 33°C but were	
			lowest in Tw 21°C. Mean blood	
			lactate levels were highest in Tw 21°C	
			as was VO _{2 max} .	
			Blood metabolites, plasma insulin, and	
			plasma levels of both noradrenaline	
			and adrenaline responses were typical	
			of other forms of submaximal exercise.	
			For competitive swimming the thermal	
			stress presented by 21°C could	
			augment training. However, for	
			recreational swimming, 27°C seems	
			most advisable for maintaining thermal	
			balance.	
32	Isreal DJ,	Core temperature response	N = 5 male volunteers (%BF 14.8 \pm 5.6)	2a
52	Heyson KM,	to immersed bicycle	were immersed to the neck at rest and	Zu
	Edlich RF,	ergometer exercise at water	during exercise on a bicycle ergometer,	
	Pozos RS, and	temperatures of 21°, 25°,	(predetermined exercise intensity:	
	Wittmers LE	and 29°C. Isreal DJ, Heyson	$63\% \pm 0.6\%$ V0 _{2 max}) for 30 minutes in	
		KM, Edlich RF, Pozos RS,	Tw @ 21, 25, and 29°C. V0 ₂ was	
		and Wittmers LE. J Burn		
			significantly higher during static	
		Care Rehabil 1989, Jul-	immersion in all Tws. Exercise V0 ₂ s	
		Aug;10(4):336-45	for all conditions were statistically	
			similar except in 21° C where VO ₂ was	
			3% higher than in 25° and 29°C. Tre	
			where significantly different with static	

			immersion than for exercise immersion in all Tws. Tre rose significantly in	
			Tw @ 29°C, there was little or no rise at 25°C and a nonsignificant decrease in 21°C.	
			Ts dropped in the first 5 minutes to within 1°C of Tw in all immersion conditions. A rating of thermal comfort (RTC) designed by the authors showed that during static immersion at all Tws RTC paralleled Ts and did not reflect changes in Tr. In Tw @ 21°C, cycling caused an additional drop in Ts. Subjects' perceptions of thermal comfort may not accurately reflect Tr, ie: people participating immersion activities may not be aware that they have hypothermia. VO_2 during static conditions indicates that subjects were shivering in the colder water. RPE was not significantly different between any of the exercise conditions.	
			Despite the variation in %BF the temperature change patterns were similar.	
33	Iwamoto J, Sagawa S, Tajima F, Miki K, Shiraki K	Critical water temperature during water immersion at various atmospheric pressures. Iwamoto J, Sagawa S, Tajima F, Miki K, Shiraki K, J Appl Physiol., 1988; 64(6): 2444-2448,	Critical water temperature defined as the lowest water temperature an unprotected subject can tolerate at rest for 2 hours without shivering. Shivering was defined as 10 minutes of visible tremor accompanied by more than a 15% increase in V0 ₂ . N = 9 healthy males, ages 23-36 were immersed at rest. Mean %BF was 15.3 \pm 1.2%. Critical Temperature established at 0.6 ATA was 32 \pm 0.4°C.	2a
34	Jacobs I, Romet T, Frim J, Hynes A	Effects of endurance fitness on response to cold water immersion. Jacobs I, Romet T, Frim J, Hynes A. Aviat Space Environ Med 1984;	N = 9 male volunteers donned standard flight gear were immersed in $Tw@10^{\circ}C$ with a lifejacket and remained head out until the Tre dropped 1°C. Immersion time ranged	2a

2a
2a
2a

			twice as fast with work unclothed than still. Clothing reduced the fall in Tre both still and @ work. Results of 20 minutes of immersion in higher temperatures: Tsk were dependent on Tw but were higher for @ work than still protocols. Tre fell in both 25 and 35°C with still protocols. Work did not affect fall in mean Tb @ 25° C but reversed the small fall in Tw@ 35° C. In other experiments: N = 12 men worked at their highest rate in Tw @ 15° C, Tre fell less than work at a standard rate but still fell faster than with the still protocol. Tsk fell less regardless of clothed/unclothed protocol in unstirred water than in stirred water. The major finding in this study was that Tre fell with work in water below 25° C. Also, clothing gave a substantial amount of protection when subjects were still as opposed to exercise.	
37	Kenny GP, Denis PM, Proulx CE, Giesbrecht GG	The effect of dynamic exercise on resting cold thermoregulatory responses measured during water immersion. Kenny GP, Denis PM, Proulx CE, Giesbrecht GG. Eur J Appl Physiol. 1999 79: 495-499	N = 6 males and 1 female, mean age 24(3) and %BF 12.9(1.7)% immersed at rest, to the clavicle at Tw 37.5°C and cooled at a rate of 6.5°C per hour until thresholds of vasoconstriction and shivering were clearly established. Onset of vasoconstriction was found to be Tsk approx 33°C, Tes approx 37°C. Onset of shivering was found to be Tsk approx 30.62° and Tes approx 36.47°	2a
38	Kollias J, Barlett l, Beigsteinova V, Skinner JS, Buskirk ER, and Nicholas WC	Metabolic and thermal responses of women during cooling in water. Kollias J, Barlett I, Beigsteinova V, Skinner JS, Buskirk ER, and Nicholas WC, J Appl Physio 1974. 36(5): 577-580	N = 10 college women (3 lean – 21- 24% BF and 7 obese – 29-41% BF) sat immersed to the neck in Tw 20°C for 60 minutes (limits: voluntary withdraw or 2°C drop in core temperature). Obese woman were taller, 53% heavier, fatter and had a lower surface area-to-mass ratio than lean subjects. Within 15 minutes of immersion metabolic rate for lean subjects had increased 2-3 X. Rate of	2a

			Δ Tre was greater for lean than for obese. Tre for obese rose ove the 1 st 15 min and then slower declined. Tre for lean subjects declined 1.4°C as compared to 0.4°C by obese subjects. Also found that average Tre was lower after participation (N=5) in a weight loss program, with decreases in BW btw 3.7 -6.7kg.	
39	Lapp MC, Gee GK	Human acclimatization to cold water immersion. Lapp MC, Gee GK. Arch Environ Health 1967 15 (11): 568- 579	N= 8 (3 male, 5 female) were immersed at rest, 2 X /wk for 1 hour over an 8 wk period @ selected bath temperatures of 21.1, 23.3, 25.6, 27.8 and 30°C The greater the body surface area the greater the rate of body heat loss. When bath temperatures ranged from 30°C(86F) to 28.3°C (83F), subjects did not mind the immersion experience. Shivering was observed for the first time in water @ 28.3°C and generally occurred after 20-30 minutes. Shivering threshold for subjects in this study was found to be established at a differential of 8.5°C (15.3F) between Tre and Tw. Temperatures from 23.9°C (75F to 21.1°C(70F) indicate a loss of effectiveness of the thermoregulatory mechanism. Body surface area appeared to be a significant factor in heat loss at this temperature range.	2a
40	LeBlanc J, Cote J, Dulca S, and Dulong-Turcot F	Effects of age, sex and physical fitness on responses to local cooling. LeBlanc J, Cote J, Dulca S, and Dulong-Turcot F. J Appl Physiol 1978; 44: 813-817	This study aimed at explaining some of the individual variability observed in large groups of subjects. In all, three experiments were carried out. $N = 27$ males to assess the influence of fitness; N = 9 subjects (20-47yrs) and 8 (53-60 yrs) to assess the influence of age; $N=$ 9 males (average age 35.0) and 8 females (average age 30.4) to assess the influence of gender.	2a

41	Lee DT, Toner MM, McArdle WD, Vrabas IS, Pandolf KB	Thermal and metabolic responses to cold-water immersion at knee, hip and shoulder levels. Lee DT, Toner MM, McArdle WD, Vrabas IS, Pandolf KB. J	in subjects 53-60 compared to subjects 20-40. No differences were found in blood pressures between the two groups. For the cold face test, bradycardia was more pronounced for older than younger subjects. The gender experiment found that at the beginning of the cold hand test, the responses for men and women were similar. At the end of the test, the change in blood pressure was significantly lower in women. Bradycardia was similar for both in the cold face test but during the 2 minutes following the test, HRs of women remained significantly lower than at the beginning of the test compared to men. Systolic BP returned to initial levels following the cold hand test in males but fell lower for women. N = 8 men (mean age 25 yrs and 16% BF) were immersed at rest and during leg cycling exercise (35% V0 _{2 max}) in knee, hip and shoulder levels in Tw 15 and 25°C for up to 135 min (limits: Tre 35°C or below or asked to be	2a
		Appl Physiol. 1997, 82(5): 1523-1530	removed). In this study cycling exercise did not prevent Tre and Tes from falling during immersion @ 15°C in a depth greater than the knee. At shoulder level immersion, in all conditions, the combined fractional values for thigh and trunk region contributed btw 59 and 66% of total body heat loss. The arms contributed	

44	McMurray RG,	Thermoregulation in	This study was conducted to compare	2a
			immersion values.	
			sufficient to maintain Tre at near pre-	
			about 1.21 l/min ⁻¹ and higher was	
			In 20°C water an exercise intensity of	
			of intensity for both 20 and 28°C	
			Tre for men declined at all three levels	
			(66% intensity).	
			in Tre with level II exercise and an increase in Tre with level III exercise	
			28°C women had only a slight decrease in Tre with level II exercise and an	
			and III especially in cold water. At	
			maintained a higher Tre @ exercise II	
			@ Tw 20 and 28°C. Women	
			at rest and 27% intensity, Tre declined	
		Physiol 1992. 65: 265-270	27, 48, and 66% VO _{2max} . For women	
		Pandolf KB. Eur J Appl	VO_{2max} . For women these equated to	
		Magel JR, Spina RJ, and	men these equated to 20, 36 & 49%	
	Pandolf KB	McArdle WD, Toner MM,	exercise at 3 different V0 ₂ levels. For	
	Spina RJ, and	of exercise intesity.	for 1 hour while performing arm-leg	
	Magel JR,	water immersion: influence	the level of the first thoracic vertebrae	
	Toner MM,	and women during cold	women (15-29%) were immersed to	
43	McArdle WD,	Thermal responses of men	N = 16, 8 men (8-18% BF) and 8	2a
			largest reductions @ 24 and 20°C.	
			Thereafter Tre steadily decreased with	
			first 20 minutes of rest at all Tw.	
			Tre deviated only slightly during the	
			For women of average BF (24-27%),	
			Tw, and then dropped steadily.	
			during the first 10-20 min of rest at all	
			maintained at pre-immersion levels	
			For men btw 15-18%BF, Tre was	
			leaner counterparts.	
		1984. 56(6) 1565-1571	cold-water immersion in comparison to	
		Environ Exercise Physiol	thermal and cardiovascular response to	
		Apply Phsiol: Respirat	proportionately smaller metabolic,	
		Gerley TJ, Toner, MM. J	Fat subjects experienced a	
	Toner MM	McArdle WD, Magel JR,	1 hour @ Tw 20, 24,and 28°C.	
	Gerley TJ,	resting men and women.	level of the first thoracic vertebrae for	
	Magel JR,	cold-water exposure in	college age) were immersed to the	
42	McArdle WD,	Thermal adjustement to	N = 18 (10 men and 8 women of	2a
			immersion @ Tw 25°C.	
			Tre at baseline levels in shoulder level	
			This level of exercise did not maintain	
			not more than 25% of heat loss values.	ļ

	Horwoth SM	swimmers and minners	thermoregulatory responses of trained	1
	Horvath SM	swimmers and runners. McMurray RG, Horvath SM. J Appl Physiol: Respirat Environ Exercise Physiol 1979. 46(6): 1086-1092	thermoregulatory responses of trained runners (age 20.8±1.1 and %BF 7.4±0.9) and swimmers (age 18.5±0.5 and %BF 9.9±1.2) performing moderate exercise (cycle ergometer) in water @ 20, 25, 30, and 35°C. N = 11, 6 swimmers and 5 runners, immersed to the neck and exercising at 60% (pre- determined) V0 _{2 max} for 30 minutes. Runners and swimmers had similar HR @ any given Tw. HR increased with increased Tw with a significant increase @ 30 and 35°C. Heat production increased in both groups @ Tw 30 and 35°C. During work in 20°C water, runners experienced a negative (-8 ± 2 kcal) heat balance. Swimmers had a positive (13 ± 7) heat storage. Tre for both swimmers and runners increased in Tw above 20°C An optimal temperature for performance can be described as the temperature at which the change in	
			caloric cost is least for a given workload. Optimal Tw for runners was approximately 30°C and for swimmers,	
			approximately 25°C.	
45	Moore TO, Bernauer EM, Set G, Park YS, Hong SK, Hayashi EM	Effect of immersion at different water temperatures on graded exercise performance in man. Moore To, Bernauer EM, Set G, Park YS, Hong SK, Hayashi EM. Aerosp Med 1970; 41(12): 1404-1408	This study compared work at three different rates in Ta @ 23-25°C and submerged with SCUBA in 4 feet of water in Tw @ 16, 22, 30°C. N = 8 healthy adult males (mean age 32.2 yrs and %BF 18.0 \pm 3.2) underwent 3 work trials (light, moderate and heavy and forced exercise restricted to legs only) in air and three work trials in each of the recorded Tws. (5 min rest, 5 minute work + 3 min rest for light, moderate and heavy with no rest from heavy to forced exercise) approximately 30 min. At rest VO ₂ was generally higher than in air especially at 16 and 22°C. At the highest work level, VO ₂ was approximately 75% of predicted max	2a 2aE

			Tre did not change significantly in air or in Tw @ 30 and 16°C. At Tw 22°C, one subject (%BF 9.5) experienced a progressive decline in Tre. There was a significantly lower HR at high workloads in water as compared to air. At rest, subjects experienced bradycardia upon initial immersion but HR returned to steady state resting by the end of the trial. This significance of this study is affect of the different modes of exercise on Tre. Leg exercise generally maintained Tre at all workloads in all three temperatures.	
46	Mougios V, Deligiannis A.	Effect of water temperature on performance, lactate production and heart rate at swimming of maximal and submaximal intensity. Mougios V, Deligiannis A. The Journal of Sports Medicine and Physical Fitness 1993 33(1): 27-22	N=30 (15 male sprinters and 15 male endurance trained swimmers) Sprinters swam 100M. Endurance swimmers swam for 30 minutes at water temperatures of 20, 26 and 32°C. The subjects characteristics (age 16.4±0.9 and %BF16.0±2.3). Each swimmer did 1 single effort in each temp (5 swimmers in each water temp). All results are compared to a test swim at 26°C: For Sprinters, HR was significantly higher in 32°C and significantly lower in 20°C. For endurance swimmers, HRs rose rapidly in 26 and 32°C and remained fairly constant but continued to rise in 20°C for 20 min and exceeded values in 26°C. There was an observed increase in speed with an increase in water temperature. Based on these findings, we suggest that water temperature is a primary factor in determining the work rate of swimmers.	2a
47	Nadel ER, Holmer I, Bergh U, Astrand PO, Stolwijk JAJ	Energy exchanges in swimming man. Nadel ER, Holmer I, Bergh U, Astrand PO, Stolwijk JAJ. J Appl	N = 3 at rest or swimming breaststroke in three water temperatures (18°, 26° and 33°) at water velocities chosen to elicit 40%, 70% and 100% VO ₂ max	2a

		Physiol. 1974 36(4): 465- 471	 (these were different for each subject) Tb changes after 20 minutes were related to Tw, swimming intensity and body insulation. @ 40% effort internal temperatures fell in 18 and 26°C (inversely related to the degree of insulation and greater in leaner subjects). In 33°C all subjects experienced increased internal temps. @ 70% effort – internal temps increased in 26 and 33°C. Lean subjects had a decrease in Tes at 18°C. All swimmers maintained internal 	
			temperatures in all Tw at Maximal effort. For most swimmers, the optimal Tw for maximal swimming performances in sprints would be around 28-30°C, where little heat would be stored and performance would not be impaired.	
48	Nielsen B, Davies CTM	Temperature regulation during exercise in water and air. Nielsen B, Davies CTM. Acta Physiol Scand. 1976, 98. 500-508	N=4 subjects swam breaststroke at two different workloads(\approx 49 and 60%) at a constant pace which they could maintain for 1 hour in water @ 30° or 33°C. The results of these experiments were compared to same subject exercise under the same conditions in air on a bicycle ergometer. The results showed that for a given work load and Ts, Tes and Tre were about 0.04°C lower and conductance values (<i>K</i>) were higher in swimming than cycling. Tre increased at both workloads in both temperatures.	2a
49	Park YS, Pendergast DR, Rennie DW	Decrease in body insulation with exercise in cool water. Park YS, Pendergast DR, Rennie DW. Undersea Biomed Res 1984; 11(2): 159-168	This study was an attempt to quantify the relative insulative value of subcutaneous fat vs muscle during prolonged immersion (chin deep) in water 28-32°C (established Tcw for each subject). N = 7 immersed at rest and with 2 levels of arm-leg exercise) for 3 hours. At rest Tre dropped exponentially over the 3 hr period. With light exercise (73 kcal•m ² •h ¹), observations were similar to rest. With	2a

		1	moderate exercise (120 kcal \bullet m ² \bullet h ¹)	
			there were no significant changes in	
			Tre.	
50	Pirnay G,	Influence of water	N = 5 medical students were immersed,	2a
50	Deroanne R,	temperature on thermal,	head-out, on a bicycle ergometer in Tw	24
	and Petit JM	circulatory and respiratory	which was modified from 20 to 40°C.	
		responses to muscular work.	They participated in 2 submaximal	
		Pirnay G, Deroanne R, and	(efforts approximately 1/3 and 2/3 of	
		Petit JM, Europ J Appl	$VO_{2 \text{ max}}$) and 1 maximal test. Warm	
		Physiol, 1977 ; 37 : 129-136	water ($\geq 30^{\circ}$ C) at both submaximal	
			intensities caused hyperthermia. 20°C	
			cold water accelerates heat exchanges	
			between the body and water. Tre was	
			always lower in these conditions but	
			thermal balance was maintained in	
			20° C with $\approx 50\%$ intensity.	
			Muscle temp was always higher than	
			Tre, decreasing in cold and increasing	
			in warm water. Maximal O ₂	
			consumption varied with Tw. In water	
			@ 20°C, the aerobic capacity was low	
			for all subjects. With an increase in	
			Tw, maximal O ₂ consumption showed	
			a significant increase. Between 25°	
			and 35°C the rise was moderate and	
			nonsignificant. In very warm (40°C)	
			water, maximum O ₂ consumption	
			decreased for all subjects.	
			These results indicate that performance	
			is affected water temperature extremes.	
51	Pretorius T,	Thermal effects of whole	N = 8 health male subjects studied in	2a
	Bristow GK,	head submersion in cold	17°C water under 4 conditions: body	
	Steinman AM,	water on nonshivering	insulated (dry suit, no hood) with head	
	Giesbrecht GG	humans. Pretorius T,	out or completely submerged, body	
		Bristow GK, Steinman AM,	uninsulated (exposed) with head above	
		Giesbrecht GG. J Appl	or completely submerged.	
		Physiol 2006, 101: 699-675	Results analyzed the first 30 minutes of	
			immersion / submersion. Tes	
			decreased significantly after 15 minutes in all conditions. Tes was	
			lower in the head in (submersion) condition then for head-out condition	
			from 15 minutes onward. There were	
			no differences btw body insulated,	
			head-in and body exposed, head-out	
			neau-m and body exposed, neau-out	

54	Pugh LGC,	The physiology of channel	A three year study of channel	2a
53	Prisby R, Glickman- Weiss EL, Nelson AG, Caine N	Thermal and metabolic responses of high and low fat women to cold water immersion. Prisby R, Glickman-Weiss EL, Nelson AG, Caine N. Aviat Space Enbiron Med 1999, 70:887- 891	N = 12 females ages 18-35 (6 HF ie; 28-35% BF and 6 LF ie; 15-22% BF) experienced 2 hours of immersion in 17 and 27°C. At 17°C, Tre declined in both groups across time. At minutes 105 and 120 there was a significant difference in Tre between groups. Tsk declined over the first 15 minutes and remained steady for the 120 minutes. Tissue insulation (Ti) increased and Tsk decreased significantly across time but there were no significant differences for variables Ti, V0 ₂ and Tsk.	2a
52	Pretorius T, Cahill R, Kocay S, and Giesbrecht GG	Shivering heat production and core cooling during head-in and head-out immersion in 17°C Water. Pretorius T, Farrell C, Kocay S, and Giesbrecht GG 2008, Aviat Space Environ Med; 79:495-499	loss. N=8 male subjects immersed/submersed in Tw @ 17°C under 4 conditions: 1) exposed head- out, 2) exposed head-in, 3) insulated head-out, 4) insulated head-in for a period not longer than 60 minutes (statistics reported on 45 minutes) Tes was unchanged throughout insulated trials – differences in Tes were not significant between insulated head-in and exposed head-out. Total body heat loss was more than twice the amount in the exposed than in the insulated conditions. Head submersion caused a fourfold increase in head heat loss in both exposed and insulated conditions. In the exposed head-in condition, head heat loss accounted for 11% of total cutaneous heat loss (as compared to the head being only 7% of the total body surface area).	2a
			conditions throughout the experiment. The head (7% of the total body surface area) contributed only 10% to the total heat loss. Head submersion increased core cooling rate much more (average of 42%) than it increased total heat loss.	

	D # 1 0 7			1
	Edholm OG	swimmers. Pugh LGC,	swimmers (N=5) ages 21-42,	
		Edholm OG. 1955. The	immersion time ranging from 12-20	
		Lancet Oct 8, 761-768	hours is water @ $15.5^{\circ}C$ (60F).	
			Subjects conformed to a certain	
			specific physical type (SA 1.78m ² –	
			$2.04m^2$). For thinner subjects,	
			metabolism of swimming was	
			insufficient to prevent hypothermia	
			from developing @ 21.8°C (71.2F).	
			25°C (77F) was necessary for a stable	
			state. These findings suggest that	
			tolerance of cold water is related to the	
			thickness of subcutaneous fat.	
55	Rennie DW,	Physical insulation of	Human cold adaptation was studied by	2a
	Covino BG,	Korean diving women.	comparing body insulation with 9	
	Howell BJ,	Rennie DW, Covino BG,	Korean diving women, 7 non diving	
	Song SH, Kang	Howell BJ, Song SH, Kang	Korean women (12% BF), 7 Korean	
	BS, and Hong	BS, and Hong SK. J Appl	men(10%BF), 10 American women	
	SK	Physiol. 1962 17(6): 961-	and 10 American men of various	
		966	adiposity (16% BF). Subjects were	
			submerged supine for 3 hours with just	
			the face showing in water @ Critical	
			water temperature (between 30 and	
			34°C).	
			Tcw for Americans with less than 16%	
			BF \approx 33-34°C. For more obese	
			Americans it was $\approx 30^{\circ}$ C.	
			Korean men (10% BF) Tcw \approx 33-31°C.	
			For Korean women (12% BF) Tcw \approx	
			31-30°C and lower.	
			There were no differences in maximal	
			tissue insulation between Korean men	
			and women that could not be accounted	
			for by differences in subcutaneous fat.	
			American tissue insulation is less than	
			the Korean when the two are compared	
			at equal fat thicknesses.	
56	Robinson S,	Temperature regulation in	Runners and swimmers were compared	2a
50	Somers A	swimming. Robinson S,	at the same metabolic rate. $N=6$	∠a
	Somers A	Somers A. J Physiol Paris	swimmers age 20-24, swam freestyle	
		1971. 63: 406-409	for 60 minutes in water @ 21, 29, and	
		17/1. 03. 400-409		
			33.5°C. The data in this study indicate	
			that optimal water temperature for	
			competitive swimming @ distances	
			requiring up to 20 minutes must be	

		1		
			between 21° and 33°C. @ 21°C the	
			average Tre of the slowest swimmers	
			declined. The average Tre of the	
			fastest swimmers rose slightly.	
			Optimal Tw may be nearer 29°C since	
			at that temperature these swimmers	
			central (core) to surface (sk)	
			temperature gradient were adequate for	
			heat conductance.	
57	Sagawa S,	Water temperature and	N = 6 men immersed to the neck for 1	2a
57	Shiraki K,	intensity of exercise in	hour in 4 water temperatures	24
	Yousef MK,	maintenance of thermal	Mean Tcw = $31.2\pm0.5^{\circ}$ C	
	,			
	and Konda N	equilibrium. Sagawa S,	$Ttn = 34^{\circ}C$	
		Shiraki K, Yousef MK, and	$Atn = 36^{\circ}C$	
		Konda N. J Appl Physiol	Mean Btn = Tcw - 2° C or $\approx 28.2^{\circ}$ C	
		1988, 65(6): 2413-2419	They performed leg exercise at 2, 3,	
			and 4 METs.	
			Resting metabolism was significantly	
			higher in water below Tcw due to	
			shivering. Metabolic rate was the same	
			regardless of Tw. Resting heat loss	
			was greater in the limbs than the trunk.	
			In this study leg exercise caused an	
			increase in Tre compared to rest in all	
			temperatures. LE @ 3-4 METS was	
			effective in maintaining near normal	
			core temperatures in water @ Tcw -	
			2°C. Two METs was enough to	
			Ũ	
			maintain near normal core	
			temperatures @ Tcw. Calculations	
			indicate that a Tw of approximately	
			25°C may be the lowest Tw in which	
			the average unprotected man can	
			continue exercising without a decrease	
			in Tc (ie: crucial Tw for unprotected	
			exercising man).	
58	Shimizu T,	Human thermoregulatory	N = 8 students(age 18-20 and	2a
	Kosaka M,	responses during prolonged	%BF \approx 12%), immersed to the xyphoid	
	Fujishima K	walking in water @ 25, 30,	process performed treadmill walking	
		and 35°C. Shimizu T,	for 60 minutes @ 50% V0 _{2 max} at three	
		Kosaka M, Fujishima K.	different temperatures. There were no	
		Euro J App Physiol 1998;	significant differences in Tre observed	
		78: 473-478	•	
		/0. 4/3-4/0	during exercise in water at different	
			temperatures. Tre increased in all	
1			temperatures with walking. Tsk of	

		1		ı
			immersed skin was directly determined	
			by Tw. There were identical increases in V0 ₂ at identical intensities which	
			infers that there was no additional	
			demand for thermoregulatory heat	
			production generated by the lowest	
			compared to the higher Tw.	
59	Sloan REG,	Cooling rates of young	N= 28 (boys and girls, age 8-19) swam	2a
	Keatinge WR,	people swimming in cold	(breaststroke and an occasional length	
		water. Sloan REG, Keatinge	of crawl) for 33 (children under 12 ¹ / ₂)	
		WR. J Appl Physiol. 1973;	or 40 minutes (older children) in water	
		35(3): 371-375	@ 20°C, waiting on the wall every 2	
			lengths just long enough to maintain an	
			O_2 consumption of 30 ± 1 l/m.	
			Tre fell for all but the fattest swimmers	
			(SCF thickness of 11-18 m X 10 ⁻²⁾ in	
			20°C water. The rate of fall in	
			sublingual temperatures decreased with	
			age and as overall fat thickness	
			increased.	
			Boys temp fall rate was faster than	
			girls and for younger children because	
			of lower fat thickness and high surface	
			area to mass ratio.	
60	Smith RM,	Skinfolds and resting heat	N = 14 male subjects with a mean	2a
	Hanna JM	loss in cold air and water:	skinfold (MSF) of 10.23mm were	
		temperature equivalence.	exposed to 3 hours of air and cold	
		Smith RM, Hanna JM. J	water to determine heat loss (excluding	
		Appl Physiol 1975; 39(1):	the head). Air temperatures were 25,	
		93-102	20 and 10°C. Water experiments were	
			conducted @ subjects established Tcw	
			(29-31°C). Body heat loss was a linear	
			function of the decrease in Ta in this	
			study. The range of Tcw is mainly a	
			result of the variability in the subjects'	
			subcutaneous fat thickness. Both MSF	
			and Surface area / mass ratio become	
			increasingly more important in cold	
			water.	
61	Smolander J,	Thermoregulation during	N = 8 boys (mean age 11.8 ± 0.5 yrs)	2a
	Bar-or O,	rest and exercise in pre-and	and 11 young adult men $(24.7 \pm 4.5 \text{ yrs})$	24
	Korhonen O,	early pubescent boys and	participated in a thermoneutral $(21^{\circ}C)$	
	Ilmarinen J,	young men. Smolander J,	test and a cold stress test (Ta $@5^{\circ}C$)	
	infumition J,	Bar-or O, Korhonen O,	for 60 minutes at rest and during	
		Ilmarinen J. J Appl Physiol	exercise at 30% VO ₂ max (pre-	
		marmen J. J Appi I hystol	CACICISC at 5070 V 02 max (pic-	

		1992; 72: 1589-1594	determined). Boys had lower BW and significantly greater surface area-to- mass ratio then men. There were no significant differences in skinfold thicknesses or in VO ₂ max expressed in kg/ml/min. Boys had lower skin temperatures at the extremities and higher VO ₂ response to the cold than young men. As a result the boys maintained their core temperatures as effectively as the adults.	
62	Strong LH, Gee Gk, Goldman, RF	Metabolic and vasomotor insulative responses occurring on immersion in cold water. Strong LH, Gee Gk, Goldman, RF J Appl Physiol 1985; 58(3): 964- 977	This study followed changes in core conductance from heat dissipation, via vasodilation, to thermoneutrality and from vasoconstriction to cold induced vasodilation for subjects representing different morphological types. N=20 healthy male volunteers (age17- 28 yrs), totally immersed, horizontally, at rest in water @ 28°C and 20°C for 1 hour per week for 10 weeks. Ten subjects were also submerged in water @ 36, 32, and 24°C. Surface heat flow is greatest from the head, thigh, abdomen, large chest muscles. Metabolic responses at 35 and 32°C were essentially the same as pre- emersion value. In general metabolic rates increase as Tw decreases until shivering exhaustion is reached. "There is, however, a marked individual variation at Tw below 32°C Tre fell in Tw below 32°C Tre profiles are more variable among subjects having average BF (12% ≤ BF \leq 19%) and body wt. (70kg \leq wt \leq 90kg)	2a
63	Tikuisis P,	Comparison of	N = 11 women and 14 men were	2a
	Jacobs I, Moroz	thermoregulatory responses	immersed to the neck on a cot and lay	

	D, Vallerand AL, and Martineau L	between man and women immersed in cold water. Tikuisis P, Jacobs I, Moroz D, Vallerand AL, and Martineau L. J Appl Physiol 2000, 89: 1403-1411	quietly in Tw @ $18\pm0.2^{\circ}$ C for 90 minutes. The only significant gender difference was the rate of change of Tre. Men and women exhibited similar changes in body cooling and metabolism during cold water immersion @ rest when subject responses were corrected for body fat and surface area/vol. Subjects of both genders with the lowest SA/vol ratio also responded with the lowest Δ Tre / Δ t.	
64	Tipton B, Eglin C, Gennser M, Golden F.	Immersion deaths and deterioration in swimming performance in cold water. Tipton B, Eglin C, Gennser M, Golden F. The Lancet. 1999 354: 626-629	N= 10 swimmers, (age 23-39 and %BF 19.7), swam 90 minutes of breaststroke at Tw 25°, 18°C and 5 swimmers at Tw 10°C. Tre increased with self-paced swimming in 25°C and were similar @ 18°C. Swimming efficiency was similar in 25 and 18°C and remained constant throughout the swim. SE declined in 10°C overtime (decrease in stroke length and increase in stroke rate and an increase in swimming angle). After swimming at 18 and 10°C, grip strength was significantly decreased (11% and 26% respectively). Arms were especially susceptible to cooling with a correlation between swimming failure and upper body skin fold thickness.	2a
65	Toner MM, Sawka MN, Foley ME, and Pandolf KB	Effects of body mass and morphology on thermal responses in water. Toner MM, Sawka MN, Foley ME, and Pandolf KB. J Appl Physiol 1986, 521-525	N = 10 (5 LM and 5 SM) with similar BF and SF thicknesses were immersed in a seated position to the neck at rest and during exercise (M approximately 550 w) in Tw @ 26°C for 1 hour. At rest Tre and Tsk were lower at hour in both groups then at 5 and 30 minutes. There was a significant relationship between skinfolds and Tre during rest in cold water. Ti values were higher for LM compared to SM both prior to and during immersion. There were no significant differences between groups	2a

			with exercise immersion.	
66	Toner MM, Sawka MN, and Pandolf KB	Thermal responses during arm and leg and combined arm-leg exercise in water. Toner MM, Sawka MN, and Pandolf KB. J Appl Physiol: Respirat Environ Exercise Physiol, 1984. 56(5): 1355- 1360.	Thermal and metabolic responses were examined during exposure in stirred water @ 20, 26, and 33°C. N = 8 males (age 22.4 \pm 3.6 and %BF 13.4 \pm 5.7) were immersed to the neck and exercised either arms only (A), legs only (L) or arm-leg combined (AL) for 45 minutes. Each subject completed each specific type exercise at both high (\approx 60%) and low (\approx 40%) intensities. At 40% intensity M was significantly higher in 20 and 26°C during A compared with 33°C and higher only in 20°C for L and AL exercise. In 20°C Tre values declined steadily for all types of exercise at 40% intensity. In 26°C Tre declined with 40% intensity for A and AL exercise but remained steady with L. During 60% intensity exercise in 26°C and 33°C, Tre steadily increased for L and AL.	2a
67	USA Swimming	2010 USA Swimming Rules and Regulations. USA Swimming 2010	Rule 103.6 – water temperature between 25-28 degrees Celsius (77- 82.4 degrees Fahrenheit) shall be maintained for competition.	5
68	Veicsteinas A, Ferretti G, and Rennie DW	Superficial shell insulation in resting and exercising men in cold water. Veicsteinas A, Ferretti G, and Rennie DW. J Appl Physiol: Respirat Environ Exercise Physiol 1982 ; 52(3): 1557-1564	N = 9 male subjects (BF ranging between 8.8 and 27.2%) immersed, head out, and rested for 3 hours in Tcw (28-33°C) to study tissue insulation. Immersion at rest in Tcw created an initial large change in tissue insulation which, after 20 minutes reach and remained constant throughout. Vasodilation occurred at Tw 32 -33°C. The results indicate that insulation provided by unprofused skin and subcutaneous fat accounts for only 10- 15% of Ti during rest in Tcw. The remaining is most likely poorly profused muscle. Protocol 2 included mild exercise with immersion. Tre increased \approx 1°C over two hours of immersion	2a

69	Wade CE, Dacanay SD, and Smith RM	Regional heat loss in resting man during immersion in 25.2°C water. Wade CE, Dacanay SD, and Smith RM. Aviat space Environ Med 1979; 50(6):590-593	N = 5 male subjects (age 19-33 and %BF ranging from 9.22 to 20.17) were immersed at rest, lying on a cot in Tw @ 25.2°C for 30 minutes. Regional heat flows were greatest in the neck, head, and upper torso and total regional heat loss was greatest from the torso. Heat flow from the neck, head, and torso was significantly correlated with skinfold thickness. No significant correlation was noted in the extremities. Subcutaneous fat is the most important factor in determination of total body heat loss. The torso, head and neck account for 63% of the heat loss in 25.2°C water.	2a
70	Wade CE, Veghte JH	Thermographic evaluation of the relative heat loss by area in man after swimming. Wade CE, Veghte JH. Aviat Space Enviorn Med 1977; 48(1): 16-18	N=4 competitive swimmers ages 16-21 and % BF ranging from 8.3-27.2) underwent a 5 minute non swimming immersion and a 500m freestyle swim at training pace (60-75%) in Tw @ 23.5°C. Subjects were scanned for surface temperature prior to immersion and after each of the aforementioned conditions. Skinfold thickness was found to correlate with the change in Tsk. Radiograms of the subjects after immersion showed the warmer areas were the chest, groin, lower abdomen, and lower neck. After swimming, the warmer areas were active muscle masses (trapezius, deltoids, triceps, biceps brachi, and pertorals). The legs were cooler.	2a
71	Wagner, JA, Horvath SM	Influences of age and gender on human thermoregulatory responses to cold exposures. Wagner, JA, Horvath SM. J Appl Physiol 1985; 58(1): 180-186.	N = 10 men and 10 women ages 20-30 and 10 men and 7 women ages 51-72 were exposed (with minimal clothing) for 2 hours to Ta @ 28, 20,15 and 10° C while resting in a semi-reclining position. Results suggest that older men may be more susceptible to cold ambient than younger people since they did not prevent a drop in Tre and	2a 2aE

]
			had a lower initial Tre. Older women,	
			by virtue of higher %BF and rapid	
			increase in metabolic rate did quite	
			well.	
			Changes in Tre and Tsk were greatly	
			dependent on the amount and	
			distribution of BF.	
72	Wagner, JA,	Cardiovascular reactions to	N = 10 men and 10 women ages 20-30	2a
	Horvath SM	cold exposures differ with	and 10 men and 7 women ages 51-72	2aE
		age and gender. Wagner,	were exposed (with minimal clothing)	
		JA, Horvath SM. J Appl	for 2 hours to Ta @ 28, 20,15 and	
		Physiol 1985; 58(1): 187-	10° C while resting in a semi-reclining	
		192	position. Heart rates (f _c) decreased	
		192	-	
			significantly over time during cold	
			exposure in men but not in women.	
			Regardless of age, men had higher	
			stroke volume (Qs) during the last hour	
			in all three colder environments when	
			compared to 28°C. Women did not.	
			During 28°C exposure, men had	
			significantly higher total arm blood	
			flows than women.	
			Younger subjects always had	
			significantly higher Qs than older	
			subjects. There were no significant	
			differences in blood pressures between	
			men and women but older subjects had	
			higher blood pressures than younger	
			subjects did. Older subjects had higher	
			forearm blood flows than younger	
			subjects for the first hour of exposure	
			in 28°C. The results of this study	
			indicate that cardiovascular	
			adjustments to moderate cold exposure	
			-	
72	Wakabuash: II	Insulation and hader	differ with both age and gender. N = 0 propubes contabildren ages	20
73	Wakabyashi H,	Insulation and body	N = 9 prepubescent children ages	2a
	Kaneda K,	temperature of prepubescent	11 ± 0.7 years (%BF, $15.1\pm4.9\%$) were	2aE
	Okura M, and	children wearing a thermal	immersed in Tw @ 23°C up to their	
	Nomra T	swimsuit during moderate-	chest and pedaled on a cycle ergometer	
		intensity water exercise.	for 30 minutes wearing a TSS or a	
		Wakabyashi H, Kaneda K,	normal swim suit (NSS). The TSS	
		Okura M, and Nomra T. J	made of 1.5mm thick neoprene covered	
		Physiol Anthropol,	the thighs, trunk, upper arms and neck.	
		2007:26(2): 179-183	Submaximal exercise intensity was	
			based on a pre-test measured in an	

			elementary swimming class (HR = 130-140 bpm). Tre was maintained slightly higher using TSS than NSS. Total insulation was higher with TSS. Tissue insulation was related to % BF in the NSS condition and was lower in the lowest fat subjects. Prepubescent children with low body fat can maintain Tre at the same level as obese children by wearing a TSS.	
74	Wakabyashi H, Hanai A, Yokoyama S, and Nomra T	Thermal insulation and body temperature wearing a thermalswim suit during water immersion. Wakabyashi H, Hanai A, Yokoyama S, and Nomra T. J Physiol Anthropol, 2006:25(5): 331-338.	This study compared healthy men wearing either a normal swim suit or a thermal swim suit immersed in water @ 26 and 29°C for 60 minutes. Tes was higher in both temperatures for the thermal suit than the normal swim suit. A thermal swim suit can increase total insulation and reduce heat loss from the skin.	2a 2aE
75	Weihl AC, Langworthy HC, Manalaysay AR, Layton RP	Metabolic responses of resting man immersed in 25.5°C and 33°C water Aviat Space Environ Med. 1981 52(2) 88-91	N= 16 unprotected Navy divers (<i>age</i> <i>and %BF NA</i>) underwent total immersion with a mask, sitting at 3M in Tw 25.5° and 33°C. There were 3 total submersions of 14 minutes each. Subjects were raised just long enough to obtain a venous sample. Tre declined in all subjects at 25.5°C. Exposure to 25°C resulted in uncontrollable shivering by the 42 nd minutes. In 33°C there was no significant difference in Tre.	2a

ARC SAC Water Temperature and ARC Aquatic Courses Scientific Review

Level of Evidence	Definitions (See manuscript for full details)
Level 1a	Population based studies, randomized prospective studies or meta-analyses of multiple studies with substantial effects
Level 1b	Large non-population based epidemiological studies or randomized prospective studies with smaller or less significant effects
Level 2a	Prospective, controlled, non-randomized, cohort or case-control studies
Level 2b	Historic, non-randomized, cohort or case-control studies
Level 2c	Case series: convenience sample epidemiological studies
Level 3a	Large observational studies
Level 3b	Smaller observational studies
Level 4	Animal studies or mechanical model studies
Level 5	Peer-reviewed, state of the art articles, review articles, organizational statements or guidelines, editorials, or consensus statements
Level 6	Non-peer reviewed published opinions, such as textbook statements, official organizational publications, guidelines and policy statements which are not peer reviewed and consensus statements
Level 7	Rational conjecture (common sense); common practices accepted before evidence-based guidelines
Level 1-6E	Extrapolations from existing data collected for other purposes, theoretical analyses which is on- point with question being asked. Modifier E applied because extrapolated but ranked based on type of study.

ARC SAC SCIENTIFIC REVIEW Appropriate water temperatures in which to conduct American Red Cross Aquatic Instructional programs

Literature Review with Temperature and Testing Data

LOE	Ref #	Head in	Head out	Age range	Immersion time	Exercise intensity	% BF	Temp range	Temp @ΔTre
2	9		To the neck		60 min	MR + 60kcal	SFT Lean 2.8 ± 0.2 Normal 4.5 ± 0.2 Obese $7.7\pm.3$	15,20, 25, 30, 35°C	↓with Tw less than 30°C regardless of rest or exercise Gradual ↓in Tre after the first 20 min
2	11	swimming		18-29 Mean 21.13	20 min	Submax	4.6 – 10.4 Mean 7.7%	17.4, 26.8, 33.1	 ↑Tre in all temperatures ↓Tre during recovery @ 17.4 Tre was lower than control
2	12		Immersed to the chin Semi- recumbent	26	60 min	NA	15.5±8.1% SCF 5.4±1.4	24, 26, 28, 30, 32, 34, 36, 37°C	In Tw $\leq 35^{\circ}$ C, Tc were below control values at 60 min of immersion. \uparrow Tre in 24, 26, 28°C over the first 10-20 minutes. \uparrow V0 ₂ occurred in 30°C @ 40 minutes or less. For 60 minutes Tw would have to be 32°C to prevent shivering \uparrow Tre @ 36 & 37°C
2 2E	13		Head out nearly	27±5.8	60 minutes	Submax light work	14% BF	24, 26, 28, 31, 31,	↑Tre @ 28-32°C w/high work loads

	water re		ARC Aquatic	Courses be	lentine Keview	-	1	1	
TA 27±1.6°C Humidity 55±8%			horizontal			load		32°C	↓T-ear @ Tw <32°C with low workload @ 60 min increment in temp same as resting Temp to prevent Δ Tre for light workload is 34°C. For heavy workload, 29°C
LOE	Ref #	Head in	Head out	Age range	Immersion time	Exercise intensity	% BF	Temp range	Temp @ΔTre
2 Ta 25°C, RH 65%	20	Swim Breast stroke Constant speed		19.8±0.9 years	120 min	50±5% max @23°C 43±6% @ 28°C 42±4% @ 33°C	13.2±3.4%	23, 28, 33°C	Tre steadily declined and was significant after 20 minutes @ 23°C and 28°C No change at 33°C
	21	Swim breast stroke		23-41 years	60 min	65% max	NA	21, 27, 33°C	↓Tre @ 21°C ↑significantly @ 33 And to a smaller extent in 27°C
	23		Sitting Ist thoracic vertebrae	18-30 40-55	40 min or when Tes ↓ to 36.5°C	NA	10.9±2.9% 13.7±8.4%	20°C	Tes ↓in both age groups at 20°C at rest
	24		Ist thoracic vertebrae	20-35	90 min	NA	LF = 9-12% HF = 18- 22%	18-22- 26°C	Tre declined as a function of time and were similar for all subjects at each time point over the 90 minutes.
			Sitting	NA	120 min	NA	14.5±4.1%	18°C	Tre declined for all

ARC SAC Water Temperature and ARC Aquatic Courses Scientific Review

Ist thoracic

vertebrae

25

Approved by ARC SAC June 2018

time

subjects as a function of

(LM)

(SM)

 $16.5 \pm 3.5\%$

Swimming 14-29 20 min 50% max 8.2±3.2% 18.26. ↑Tes in 26 & 34 with 30 Vs 34°C mean max running 21.4 ± 7.3 ↑Tes in 26 & 34 with submax The leanest subject (3.8%BF) could not sustain Tes w/submax swimming in 26 or 18°C Subject with 6.2% BF maintained Tes in 26°C LOE % BF Ref # Head in Head out Immersion Exercise Temp Temp $(a)\Delta Tre$ Age intensity range time range 2 31 NA 60 min 65% max NA \uparrow Tre and Tes (*a*) 27 & Swim breast 21, 27, 33°C 33°C stroke \downarrow Tre (*a*) 21°C 32 Immersed to 21-32 30 min 60% max $14.8\pm$ 21, 25, ↑Tre@ 29°C 2 2E the neck Mean cycling 5.6% 29°C Similar @ 25°C 26.8 ↓@21°C 2 33 NA Tcw $32\pm 0.4^{\circ}C$ To the neck 23-36 120 min $15.3 \pm 1.2\%$ 2E Tes↓ at a faster rate in water Ta 30°C circulated the first hour than in the RH 60% second 2 36 To the 19-26 20 min Rowing NA 5, 15, 25, ↑Tre @35°C 2E 35, 37°C Slight ↓ with work in shoulders ergometer Ta 25°C Tw<25°C A standard rate? 38 18-22 20°C 2 To the neck 60 min NA 21-24% BF Tre for obese rose over 2E the 1st 15 min and then 22-31 29-41% BF Ta 24slowly dropped 26°C Tre for Lean ↓1.4°C

ARC SAC Water Temperature and ARC Aquatic Courses Scientific Review

									compared to .4°C for obese
2 2E	41		Shoulder immersion	25	Up to 135 min	35% max	16%	15,25, 35°C	↓Tre@ 25°C
2 2E	42		1 st thoracic vertebrae	19-29	60 min	NA	Men 15-18% Women 24-27%	20, 24, 28°C	Men 15-18%BF -Tre remained constant for 10-20 min For women 24-27%, Tre remained constant for 20 min then declined in all Tws
LOE	Ref #	Head in	Head out	Age range	Immersion time	Exercise intensity	% BF	Temp range	Temp @ΔTre
2 2E	43		1 st thoracic vertebrae	19-29	60 min	Arm/leg ergometer 20,36,49 % for men 27, 48 and 66% for women	8-18%	20, 28°C	For women Tre ↓ at rest and Level I intensity @ 28°C Tre ↑ slightly for both level II and III (48-66% max) In males Tre↓ in 20°C at all exercise intensities Tre↓in 28°C for level I and II exercise but ↑with 49% intensity For women Tre
2 2E	44		To the neck	18-22	30 min	60% max	Runners 7.4±0.9% Swimmers 9.9±1.2%	20,25,30, 35°C	Runners ↓Tre in 20°C Swimmers ↑Tre in 20°C (non significant) Tre ↑in all Tw above 20°C

ARC SAC Water Temperature and ARC Aquatic Courses Scientific Revi	ARC SAC Water Temperature and	ARC Aquatic Cour	ses Scientific Review
---	-------------------------------	------------------	-----------------------

	1	inperature and	AIC Aqualle				1		1
2 2E	45	Submerged with SCUBA		23-42 (32.2)	5 min rest, 5 min work followed by 3 min rest At each work load. \approx 30 min	Light Moderate Heavy (75% max)	18.0±2.3	16, 22, 30°C	Tre was maintained with all workloads at all temperatures during the 5 minute exercise bouts
2	47	Swam breast stroke		24-26	20 min	40, 70, 100% max	12.4 8.7 7.4	18, 26, 33°C	 @40% ↓Tre in 18 & 26°C @ 70%↓Tre with 2 leanest subjects in 18°C @ 70% ↑Tre in 26 & 33°C
2	48	Swam breast stroke	23-32		60 min		SFT = 8.3- 9.4	30 & 33°C	Tre ↑at both workloads in both temperatures
LOE	Ref #	Head in	Head out	Age range	Immersion time	Exercise intensity	% BF	Temp range	Temp @ ΔTre
2 2E	50		Head out	Medical students	15 min	Bicycle ergometer 33%, 66%, 100%	NA	20-40°C	Hyperthermia in Tw \geq 30°C at \approx 50% intensity At \approx 50% intensity, thermal balance was maintained (+) in 20°C
2	56	Swam freestyle		20-24	60 min	Various	NA	21, 29, 33.5°C	Tre of the slowest swimmers ↓in 21°C Tre of fastest swimmers ↑ @ 21°C Tre↑ in 29°C Swimmers became distressed in 33.5°C
2 2E	57		To the neck In stirred	24-50 Mean	60 min	LE 20, 30 and	18-23 Mean	31.2, 28.8, 34, 36°C	Tre ↑at all temperatures with all workloads

ARC SAC Water Temperature and ARC Aquatic Courses Scientific Review

Ta 25°C RH 56%			water	43±4.1		40% max	19.9±1.2%		20% intensity was enough to maintain Thermal balance in Btn
2 2E	58		To the xyphoid	18-20	60 min	Walking 50% max	7.0-15.0 Mean 11.1±2.5%	25, 30, 35°C	Tre ↑over the 60 min at all temperatures
2	59	Swam breast stroke and some freestyle		8-20	33 min 40 min	Easy to moderate 30±1 l/m	SFT Between 5.8 and 19.2 m X 10 ⁻²	20°C	Tre ↓in all cases Non significant decreases with individuals whose SFT was btw 11-18
2 Ta 23- 24°C	62	Totally immersed In still water		17-28	60 min	NA	23% 11-15% 7-9%	20, 24, 28, 32, 36°C	Tre between groups at 20°C differed by as much as 1°C Tre the same @ 32 & 35°C and ↓ in Tw below 32°C except for the heaviest subjects
LOE	Ref #	Head in	Head out	Age range	Immersion time	Exercise intensity	% BF	Temp range	Temp @ΔTre
2	64	Swimming breast stroke		23-39 Mean 30	90 min	Self paced	10.6-26.8% Mean 19.7%	18 & 25°C	Tre ↑ @25°C Tre nearly the same @ 18°C
2 2E	66		To the neck	22.4±3.6	45 min	A, AL, L ≈ 40% & ≈60%	13.4±5.7%	20, 26, 33°C	↓Tre in 20°C low intensity exercise ↓ Tre in 26°C with low intensity≈ 40% exercise except L ↑Tre in 26°C & 33°C for high intensity≈ 60% AL and L

ARC SAC Water Temperature and ARC Aquatic Courses Scientific Review

ARC SAC Water Temperature and ARC Aquatic Courses Scientific Review

immersion	divers		33°C	25.5°C
Sitting @				Uncontrollable shivering
3M				at minute 42
				↓in Tre @ 33°C non-
				significant