

ARC SAC SCIENTIFIC REVIEW Pediatric Tourniquet Use

Questions to be addressed:

In the pediatric population is one tourniquet type compared with another tourniquet type favored for lower limit of age, success rate, outcome, ease of use, or adverse effects?

Introduction/Overview:

While tourniquets have become standard therapy for life threatening bleeding in adults, little data is available to guide the use of tourniquets in pediatric patients. Although the principles of bleeding control remain the same in both adult and pediatric patients, body size may limit the use of tourniquets in smaller limb circumferences. For instance, some tourniquets employ a rigid mechanical advantage system (e.g. windlass or ratchet) that precludes the ability to fit circumferences that are smaller than that mechanism. As tourniquets rely on the ability tighten enough to occlude distal blood flow, these circumference limitations may prevent successful use of certain tourniquets on the smaller limbs of pediatric patients. This question evaluates the pediatric trauma literature to determine if tourniquets can be successfully applied, and if there are lower age limits or tourniquet mechanisms recommended for pediatric casualties.

Search Strategy and Literature Search Performed

Key Words Used

<u>PubMed</u>

"Tourniquets"[Mesh] OR Tourniquets	+
AND "Child, Preschool"[Mesh] OR "Child"[Mesh] OR "Infant"[Mesh] OR CHILD OR CHILDREN OR PEDIATRICS OR KID OR KIDS OR "Pediatrics"[Mesh] OR "Pediatric Emergency Medicine"[Mesh]	
AND "Hemorrhage"[Mesh] OR BLEED OR BLEEDING OR BLOOD LOSS OR "Blood Loss, Surgical"[Mesh] OR "Blood"[Mesh]	128
OR	
((("Tourniquets/adverse effects"[Mesh] OR "Tourniquets/complications"[Mesh] OR "Tourniquets/methods"[Mesh]))	

AND "Child, Preschool"[Mesh] OR "Child"[Mesh] OR "Infant"[Mesh] OR CHILD OR CHILDREN OR PEDIATRICS OR KID OR KIDS OR "Pediatrics"[Mesh] OR "Pediatric Emergency Medicine"[Mesh]	57
	128-
	10
	DUPS
	164

<u>EBSCO</u>

S 1 and 2 and 3	Interface - EBSCOhost Research Databases Database - CINAHL Complete;Global Health;Health Source - Consumer Edition;Health Source: Nursing/Academic Edition		82
S 3	Hemorrhage OR BLEED OR BLEEDING or "Blood Loss" or Blood	Search modes - Boolean/Phrase	472,961
S2	tourniquet use OR tourniquet application OR tourniquet	Search modes - Boolean/Phrase	1,647
S1	Child OR Infant OR CHILD OR CHILDREN OR PEDIATRICS OR KID OR KIDS OR "Pediatric Emergency Medicine"	Search modes - Boolean/Phrase	761,729

EBSCO = 82 + PubMed=164 total 246 less 59 dups=187

Inclusion Criteria (time period, type of articles and journals, language, methodology) All time periods, all article types, meeting abstracts if available.

Exclusion Criteria (only human studies, foreign language, etc...) English language only

Databases Searched and Additional Methods Used (references of articles, texts, contact with authors, etc...) PubMed, EBSCO

Indentification	 Records identified through database searching (n =246) Additional records identified through other sources (n = 4
Screening	 Records after Duplicates Removed (n= 191) Records Screened (n= 191) Records Excluded (n= 172)
Eligibility	 Full-text articles assessed for eligibility (n = 19) Full-text articles excluded, with reasons (n = 12; no speficic data on the pediatric population)
Included	 Studies included in qualitative synthesis (n = 7) Studies included in quantitative synthesis (n = 0)

Scientific Foundation:

A literature search identified 7 studies for inclusion. One was a observational trial in volunteers age 6-16 years, one observational trial in pediatric patients age 2-7 years of age undergoing elective orthopedic surgery, two used models of pediatric limb circumferences, two were epidemiologic studies of tourniquet in the pediatric population in conflict zones and one was a case report. One study on human volunteers demonstrated consistently successful application in both upper arms and upper legs of children ≥ 6 years of age (Harcke 2019). A second study in demonstrated successful application in human participants 2-7 years of age with a minimal limb circumference of 13 cm (Kelly 2019). Studies in manikin and PVC models generally demonstrate that some windlass and ratcheting tourniquets has increased failure rates as model circumferences, with failure rates becoming increasingly higher in sizes that would model the upper extremities of children under 5 years of age (El-Sherif 2019, Vretis 2018). It is possible that the pliability of human tissue made the mechanism less of a factor than with the less pliable materials used in the two model studies. No study in this review specifically evaluated ease of use or lay provider use in the pediatric population. The First Aid Sub-council placed a high value on the human studies that suggest a windless type tourniquet (specifically C-A-T[®] GEN7) can abolish distal pulses in both the upper and lower extremities, if applied appropriately, to a child as young as 2 (in this case with a limb circumference of 13 cm). In using manikins and PVC pipe models the overall trend was that the smaller the circumference of the model, the less likely the tourniquet was to be successfully applied, however the overall results were inconsistent, and the Sub-council chose to significantly downgrade the certainty of these studies. In our review the Sub-council considered the position statements from both the Pediatric Trauma Society and the Committee for Tactical Emergency Casualty Care Pediatric Working Group, both of which advocate for the use of tourniquets for life-threatening extremity hemorrhage in the pediatric population (Cunningham 2018, Joint Trauma System 2019).

In 2019, Harcke published an observational study with very low certainty evidence (downgraded for bias, indirectness and imprecision) evaluating the use of Combat Application Tourniquets (C-A-T[®])_in school age children (6-16 years of age). Sixty participants were recruited as a convenience sample from an orthopedic clinic and had a CAT Generation 7 applied to one upper extremity at the mid-biceps level and one lower extremity at the mid-thigh level. Height, weight and limb circumference were recorded. All tourniquets were applied by the researchers and no apparent blinding occurred. Successful application was determined by cessation of the distal pulse with a maximum of three windlass turns to limit pain. The CAT was successful in occluding arterial flow in 100% (60/60) of upper extremities and 93% (56/60) lower extremities. One participant withdrew due to pain and 3 applications failed to occlude pulses after 3 tourniquet turns. Upper extremity circumferences ranged from 16-37 cm, while lower extremity circumferences ranged from 26-55.5 cm. In this study the CAT Gen 7 windlass tourniquet was successful in occluding distal pulses in both upper and lower extremities of those children age 6 and over with a limb circumference ≥ 16 cm.

In 2019 Kelly and colleagues presented data at the Special Operations Medical Association Scientific Conference regarding tourniquet use in the pediatric population. This was very low certainty evidence (downgraded for bias, indirectness, and imprecision). In this study patients undergoing elective orthopedic surgery had a tourniquet placed on one or more non-injured extremities in the operating room while under anesthesia. Thirteen patients age 2-7 years were enrolled. All tourniquets were placed by medical providers and were C-A-T[®] GEN7 tourniquets. Tourniquets were placed on 24 limbs (11 upper extremities and 13 lower extremities) with a 100% success rate in occluding distal pulses. The minimal limb circumference tested was 13 cm in a 2-year-old child.

In 2019 El-Sherif published a study with very low certainty evidence (downgraded for bias, indirectness and imprecision) evaluating the use of multiple types of tourniquets on two models of pediatric extremities. The tested tourniquets were the Combat Application Tourniquet Generation 6 (C-A-T[®] GEN6) and Generation 7 (C-A-T[®] GEN7), the SOF tactical tourniquet (SOFTT), the SOF tactical tourniquet wide (SOFTT-W), the Stretch Wrap and Tuck Tourniquet (SWAT-T) and the Emergency Trauma Dressing (ETD), a trauma pressure dressing. Four commercially available pediatric resuscitation manikins representing an infant, 1-year old child and two 5-year old children were used as models. Application sites on the models included the proximal humerus, mid-biceps area, the mid-forearm, the proximal femur, the mid-thigh and the mid-calf. Additionally, six sections of PVC pipe with an external circumference of 10.8-41.9 cm were used as models. Successful application was determined by inability to slip more than one finger under the tightened tourniquet and ability to tighten and secure the windlass. In the infant model, windlass tourniquets were only able to be appropriately used on the thigh, and while the SWAT-T and ETD were able to be appropriately tightened, they were deemed failures as their width made it impossible to isolate a specific location on the limb. In the 1-year old child model, all tourniquets were successful in the thigh area, however all windlass models were unsuccessful in the mid-biceps or forearm. Both the SWAT-T and ETD were successful in all areas tested. In the 5-year-old manikin models, tourniquets were able to be successfully placed on the proximal femur and mid-thigh; windless tightening allowed for success in the mid-biceps area, whereas there were failures in the forearm area. PVC model results varied depending on the circumference of the simulated extremity but in general the windlass tourniquets were unsuccessful when applied to PVC with an average limb circumference of \leq 14.6 cm, which is equivalent to the average upper arm circumference of a 2-year-old child (Appendix A). For the C-A-T[®] GEN 6 & 7, the windlass was not able to be secured on the PVC model of 19.7 cm circumference (10-year-old upper extremity, Appendix A). All windlass tourniquets were successful in PVC diameters equivalent to lower extremities of those at least 7 years of age, although there was a large gap in tested PVC diameter, with no representative lower extremity limb diameters between 1 and 7 years of age. While the SWAT-T was able to be used in all models of upper and lower extremities, their width prevented isolation of specific areas in the infant model, potentially limiting applicability.

	Thigh	Calf	Mid-Biceps	Mid-Forearm
CAT7	W/P	F	F	F
CAT6	F	F	F	F
SOFIT	F	F	F	F
SOFTT-W	W/P	F	F	F
SWAT-T	F	F	F	F
ETD	F	F	F	F

 TABLE I.
 TQ Efficacy, Simulaids SaniBaby Infant Manikin Model

P: Pass.

F: Fail.

W: Windlass-enabled pass. 1st Letter: Ability to tighten TQ.

2nd Letter: Ability to secure the windlass (where applicable).

 TABLE II.
 TQ Efficacy, Gaumard HAL S3004 1-Year-Old Manikin Model

	Thigh	Calf	Mid-Biceps	Forearm
CAT7	P/P	W/P	F	F
CAT6	P/P	W/P	F	F
SOFTT	P/P	F	F	F
SOFTT-W	P/P	F	F	F
SWAT-T	Р	Р	Р	Р
ETD	Р	Р	Р	Р

P: Pass.

F: Fail.

W: Windlass-enabled pass.

1st letter: Ability to tighten TQ.

2nd letter: Ability to secure the windlass (where applicable).

TABLE III.	TQ Efficacy,	Laerdal I	Resusci	Junior 5	-Year-(Old	Manikin N	Model
------------	--------------	-----------	---------	----------	---------	-----	-----------	-------

	High Leg	Mid-Thigh	Mid-Calf	Mid-Biceps	Mid-Forearm
CAT7	P/P	P/P	W/P	W/P	W/P
CAT6	P/P	P/P	W/P	W/P	W/P
SOFTT	P/P	P/P	P/P	P/P	W/P
SOFTT-W	P/P	P/P	W/P	P/P	F
SWAT-T	N/A*	Р	Р	Р	Р
ETD	N/A*	Р	Р	Р	Р

P: Pass.

F: Fail.

W: Windlass-enabled pass.

1st letter: Ability to tighten TQ.

2nd letter: Ability to secure the windlass (where applicable).

N/A*: Width of the elastic TQ resulted in placement in an area including both the high leg and the mid thigh.

TABLE IV.	TQ Efficacy, Gaumard HAL S3005 5-Year-Old Manikin Model
-----------	---

	High Leg	Mid-Thigh	Mid-Calf	Mid-Biceps	Mid-Forearm
CAT7	P/P	P/P	W/P	W/P	F
CAT6	P/P	P/P	W/P	W/P	W/P
SOFTT	P/P	P/P	P/P	P/P	W/P
SOFTT-W	P/P	P/P	P/P	P/P	F
SWAT-T	NA*	Р	Р	Р	Р
ETD	NA*	Р	Р	Р	Р

P: Pass.

F: Fail.

W: Windlass-enabled pass.

1st letter: Ability to tighten TQ.

2nd letter: Ability to secure the windlass (where applicable).

N/A*: Width of the elastic TQ resulted in placement in an area including both the high leg and the mid thigh.

TABLE V. TQ Efficacy, PVC Pipe Model

PVC Circumference (CM)	Age (Mos) Equivalent UE	Age (Mos) Equivalent LE	CAT7	CAT6	SOFTT	SOFTT-W	SWAT-T	ETD
10.8	0-3	N/A	F	F	F	F	Р	F
14.6	19-24	N/A	F	F	F	F	Р	F
19.7	109-120	3–6	P/F	P/F	P/P	W/P	Р	Р
23.5	>156	10-12	P/F	P/F	P/P	W/P	Р	Р
33.7	>156	85-96	P/P	P/P	P/P	P/P	Р	Р
41.9	>156	133–144	P/P	P/P	P/P	P/P	Р	Р

P: Pass.

F: Fail.

W: Windlass-enabled pass.

UE: Upper extremity.

LE: Lower extremity.

1st Letter: Ability to tighten TQ.

2nd Letter: Ability to secure the windlass (where applicable).

Two different components were assessed for successful application: tightness of the TQ and ability to secure the windlass (where applicable). The ability to tighten the TQ strap around the limb without slack was graded as a pass (P). Slack was identified based upon the ability to easily slip more digits than an adult index finger beneath the TQ strap. The presence of a very small amount of slack removed by a single windlass revolution was classified as a windlass-enabled pass (W). Failure to remove slack with more than one windlass revolution was classified as a fail (F). Ability to secure the windlass (where applicable) was evaluated in a simple pass/fail (P/F) manner. If the TQ could not be tightened, the ability to secure the windlass was not assessed.

In 2018, Vretis published an abstract at the NAEMSP annual meeting with very low certainty evidence (downgraded for bias, indirectness and imprecision) that evaluated the efficacy of nine commercial tourniquets on PVC pipe with rubber tubing models of 6 different diameters. The tourniquets tested were the Stretch Wrap and Tuck Tourniquet (SWAT-T), TacMed K9 (TMK9), Rapid Application Tourniquet System (RATS), Combat Application Tourniquet (C-A-T[®]), Sam XT (SAMXT), Tactical Mechanical Tourniquet (TMT), the SOF Tactical Tourniquet – Wide (SOFTTW), the Child Ratcheting Medical Tourniquet (CRMT) and the Mechanical Advantage Tourniquet (MAT). Study investigators were unblinded. The SWAT, TMK9, RATS and CRMT were successful stopping the flow of water on all models (down to 3.81 cm diameter, 11.9 cm circumference). The MAT failed on PVC sizes 7.62 cm diameter (23.9 cm circumference) and smaller. The TMT and SOFTTW started failing on diameters 6.35 cm (19.9 cm circumference; 10-year-old upper extremity, Appendix A) and smaller. The C-A-T[®], SAMXT, TMT, and SOFTTW failed on the 5.08 cm diameter (16.0 cm circumference; 5-year-old upper extremity, Appendix A) models. In this study elastic and ratcheting models were more successful in stopping simulated bleeding than windlass type models. It is mentioned in an online presentation that 100% of evaluators chose RATS as the tourniquet they would least like to carry for pediatrics and 100% of the evaluators chose the CRMT as the tourniquet they would most like to carry for pediatrics (raw data not shown).

	10.16 cm	8.89 cm	7.62 cm	6.35 cm	5.08 cm	3.81 cm
САТ	20 (100%)	20 (100%)	20 (100%)	20 (100%)	6 (30%)	0 (0%)
SAMXT	20 (100%)	20 (100%)	20 (100%)	20 (100%)	14 (60%)	0 (0%)
тмт	20 (100%)	20 (100%)	20 (100%)	0 (0%)	0 (0%)	0 (0%)
SOFTTW	20 (100%)	20 (100%)	20 (100%)	14 (60%)	0 (0%)	0 (0%)
CRMT	20 (100%)	20 (100%)	20 (100%)	20 (100%)	20 (100%)	20 (100%)
мат	20 (100%)	20 (100%)	14 (60%)	0 (0%)	0 (0%)	0 (0%)
SWAT	20 (100%)	20 (100%)	20 (100%)	20 (100%)	20 (100%)	20 (100%)
тмк9	20 (100%)	20 (100%)	20 (100%)	20 (100%)	20 (100%)	20 (100%)
RATS	20 (100%)	20 (100%)	20 (100%)	20 (100%)	20 (100%)	20 (100%)

Sokol published a retrospective chart review in 2015 with very low certainly evidence (downgraded for imprecision) from the Department of Defense Trauma Registry of pediatric injuries (less than or equal to 18-years-of-age) treated at Camp Bastion Afghanistan from 2004-2012. 766 patients were identified, with 74% having battle related injuries. A total of 125 patients had significant extremity injuries that were

determined to be amenable to a tourniquet however only 47 received a pre hospital tourniquet. There was no difference in mortality when corrected for injury severity. Lower extremity amputations treated with a pre hospital tourniquet required less intravenous fluids [2.4 (3.2) L vs 4.2 (4.0) L, p = 0.032], however there was no statistical difference in blood product requirements, nor in IVF or blood product requirements on upper extremity amputations.

In 2012 Kragh published a retrospective review with very low certainly evidence (downgraded for imprecision) from the Joint Trauma System's Joint Theater Trauma Registry examining the use of tourniquets in pediatric trauma care (less than 18 years of age). During the study period of May 17, 2003 to December 25, 2009, 88 patients were identified in which a tourniquet was applied, with an average age of 11 years. Explosions accounted for 64% of injuries, followed by gunshot wounds (30%), machinery accidents (3%), knife wounds (1%) and motor vehicle crashes (1%). The overall survival rate was 93% (74/81) with is similar to historic data from published tourniquet studies of adult patients (87%) (Kragh 2008, Kragh 2009, Brodie 2007).

Callaway published a case report with very low certainty evidence (downgraded for bias, and imprecision) in 2017 detailing a 7-year-old boy who was struck in the leg with an object expelled from a running lawn mower. The patient sustained a deep laceration to the upper thigh. On EMS arrival the patient displayed signs of shock with a weak radial pulse. EMS applied a Combat Application tourniquet (Generation not listed) to the proximal thigh. Vitals were recorded as a blood pressure of 90 by palpation and a heart rate 150 beats per minute. The patient received 350 cc of normal saline on transport to the hospital. On arrival his heart rate was 170 beats per minute and blood pressure was 117/93. Hemorrhage from a femoral artery laceration was noted to be controlled by the tourniquet. The patient was transfused 3 units of packed red blood cells as he had a hemoglobin of 10.8, an arterial vascular graft was performed by vascular surgery in the OR and the patient recovered and returned to normal activity.

The Pediatric Trauma Society published a position statement in 2017 regarding tourniquet use in the prehospital care of pediatric trauma patients. The society conducted a systematic review that included the literature reviewed above, and multiple pediatric operating room studies deemed too indirect for inclusion in this SAC review. The Pediatric Trauma Society recommended the use of tourniquets in the prehospital setting and during resuscitation of children from exsanguinating hemorrhage if direct pressure failed to control exsanguinating hemorrhage or if attempting direct pressure would be too resource intensive. This recommendation was based on grade C/D quality of evidence (Oxford Center for Evidence Based Medicine – case-series, case control studies, expert opinion).

In 2013 the Committee for Tactical Emergency Casualty Care assembled a Pediatric Working Group to recommend principles for pediatric care for traumatic injuries. The working group used adult tactical emergency casualty care guidelines as a framework and reviewed the pediatric literature to pertinent to the treatment of pediatric traumatic injury. Draft guidelines were presented and adopted at a full committee semiannual meeting. Tourniquets are recommended for life-threatening extremity hemorrhage as first line therapy in both direct threat care (care under fire) and indirect threat care. In the evacuation phase, tourniquets or pressure dressings with deep wound packing are recommended to control life-threatening treatment, tourniquets are recommended for all traumatic amputations. It is recommended that tourniquets are only applied for up to two hours if possible. Recommendations were based on similar low certainty evidence found in the above SAC review.

Recommendations and Strength (using table below):

Standards:

• None

Guidelines:

• A manufactured windlass tourniquet should be used to treat life threatening extremity hemorrhage in children approximately 2-years-of-age and older. (LOE 3b)

Options:

- Direct pressure, with a hemostatic agent if available, should be used for children with lifethreatening extremity bleeding when a windlass tourniquet is not available. (LOE 7)
- Direct pressure, with a hemostatic agent if available, should be used to treat life-threatening extremity bleeding in children less than 2-years-of-age. (LOE 7)

* The only tourniquet that was tested in humans was the C-A-T[®] GEN7.

Knowledge Gaps and Future Research:

In the studies reviewed the only tourniquet that was tested in humans was the C-A-T[®] GEN7. More human studies are needed to determine whether other tourniquet types are able to be used successfully in the pediatric population and the lower age limits to which these tourniquets can be successfully applied in both upper and lower extremities.

Implications for ARC Programs:

Instructors can teach providers to use of a windlass tourniquet for life-threatening extremity injuries for pediatric patients down to approximately age two and older. They should understand while that additional data may emerge, the only product currently tested in the human population in this age group is the C-A- T^{\otimes} GEN7. We will not teach the use of a tourniquet under age two. For those younger than two years of age manual pressure will still be encouraged as the mainstay of therapy for life threatening bleeding.

Attach Any Lists, Tables of List of Recommendations Created As Part of This Review

None

ARC SAC SCIENTIFIC REVIEW Pediatric Tourniquet Use

Summary of Key Articles/Literature Found and Level of Evidence/Bibliography:

Author(s)	Full Citation	Summary of Article (provide a brief summary of what the article adds to this review including which question(s) it supports, refutes or is neutral)	Methodology	Bias Assessme nt	Indirectness/ Imprecision/ Inconsistency		Support, Neutral or Oppose Question	Level of Evidence (Using table below)	Quality of study (excellent, good, fair or poor) and why
Kelly J, Levy M, Reyes J, Anders J.	Descriptio n of Penetratin g Trauma in Children by Age and Location: A National Trauma Database Review. Special Operation s Medical Associatio n Scientific Conferenc e. 2019 May; personal communic ation.	Supports. Studies the use of a CAT gen 7 tourniquet in a pediatric population down to age 2 and with a limb diameter of 13 cm.	Observational studies of 13 patients undergoing elective orthopedic surgery. All tourniquets applied by researchers. Success was abolishing distal pulses.	Serious	Serious indirectness and imprecision.	Tourniquets were placed on 24 limbs (11 upper extremities and 13 lower extremities) with a 100% success rate in occluding distal pulses.	Support	LOE 2a	Good, observation human data of successful tourniquet use.
Harcke HT,	Adult	Supports. Studies the	Observational study	Serious	Serious	Key results and	Support	LOE 2a	Good,
Lawrence LL, Gripp	Tournique t for Use	use of the CAT Gen 7 tourniquet in a	of 60 healthy pediatric patients		indirectness and imprecision	magnitude of results			observation human data of

Approved by ARC SAC June 2019

EW,	in School-	pediatric population	aged 6-16 years			CAT was			successful
Kecskemeth	Age	down to age 6 years	presenting to a			successful in			tourniquet use.
y HH, Kruse	Emergenc	with a minimum limb	clinic. All			occluding arterial			tourniquet use.
RW,	ies.	circumference of 16	tourniquets applied			flow in 100%			
Murphy SG.	Pediatrics.	cm	by researchers.			(60/60) of upper			
Mulphy SO.		CIII	-			extremities and			
	2019 May		Success was						
	7. pii:		abolishing distal			93% (56/60)			
	e2018344		pulses within 3			lower extremities.			
	7. doi:		windlass turns.			One participant			
	10.1542/p					withdrew due to			
	eds.2018-					pain and 3			
	3447.					applications			
	[Epub					failed to occlude			
	ahead of					pulses after 3			
	print]					tourniquet turns.			
						Upper extremity			
						circumferences			
						ranged from 16-			
						37 cm, while			
						lower extremity			
						circumferences			
						ranged from 26-			
						55.5 cm.			
El-Sherif N,	Sweating	Supports. Studies the	Simulation study	Serious	Serious	In the infant and	Support	LOE 4	Poor, variable
Lowndes B,	the Little	use of multiple	evaluating the use		indirectness and	1 yo model,	11		results.
Franz W,	Things:	tourniquets in both	multiple tourniquets		imprecision	windlass			Difficult to
Hallbeck	Tournique	manikin and PVC	on four		I	tourniquets were			extrapolate to
MS, Belau	t	models.	commercially			only able to be			clinical use.
S,	Applicatio		available pediatric			appropriately			ennieur user
Sztajnkrycer	n Efficacy		resuscitation			used on the thigh.			
MD	in Two		manikins			In the infant			
ML	Models of		representing an			model while the			
	Pediatric		infant, 1-year old			SWAT-T and			
	Limb		child and two 5-year			ETD were able to			
	Circumfer		old children were			be appropriately			
	ence. Mil		used as models.			tightened, they			
						•			
	Med.		Additionally, six			were deemed			
	2019 Mar		sections of PVC			failures as their			
	1;184(Sup		pipe with an			width made it			
	plement_1		external			impossible to			
):361-366.		circumference of			isolate a specific			
	doi:		10.8-41.9 cm were			location on the			
	10.1093/		used as models.			limb. In the 5-			
	milmed/us		Successful			year-old manikin			
	y283.		application was			models,			

			determined by inability to slip			tourniquets were able to be			
			more than one			successfully			
			finger under the			placed on the			
			tightened tourniquet			proximal femur			
			and ability to			and mid-thigh;			
			tighten and secure			windless			
			the windlass. All			tightening			
			tourniquets applied			allowed for			
			by the researcher.			success in the			
			5			mid-biceps area,			
						whereas there			
						were failures in			
						the forearm area.			
						PVC model			
						results varied			
						depending on the			
						circumference of			
						the simulated			
						extremity but in			
						general the			
						windlass			
						tourniquets were			
						unsuccessful			
						when applied to			
						PVC with an			
						average limb			
						circumference of			
						\leq 14.6 cm, which			
						is equivalent to			
						the average upper			
						arm			
						circumference of			
						a 2-year-old			
						child.			
Callaway	Case	Supports. Case report	Case report	Serious	Serious	EMS applied a	Support	LOE 3b	Poor, case
DW, Puciaty	Report:	of a tourniquet	detailing a 7 year		imprecision	Combat			report.
А,	Life	placement for a	old boy who was			Application			
Robertson J,	Saving	possible life	struck in the leg			tourniquet			
Hannon T,	Applicatio	threatening extremity	with an object			(Generation not			
Fabiano SE.	n of	bleed in a child.	expelled from a			listed) to the			
	Commerci		running lawn			proximal thigh.			
	al		mower			Hemorrhage from			
	Tournique					a femoral artery			
	t in					laceration was			

Vretis, J.	Pediatric Extremity Hemorrha ge. Prehosp Emerg Care. 2017 Nov- Dec;21(6) :786-788. doi: 10.1080/1 0903127.2 017.13321 26. Epub 2017 Jun 28. Comparis	Supports. Studies the	Simulation study	Serious	Serious	noted to be controlled by the tourniquet.	Support	LOE 4	Poor, variable
vieus, J.	Comparis on of commerci al tourniquet s in a pediatric trauma patient model. Prehosp Emerg Care. 2017 Oct 5:1-50. doi: 10.1080/1 0903127.2 017.13777 91. Abstracts for the 2018 NAEMSP Scientific Assembly.	Supports. Studies the use of multiple tourniquets in both manikin and PVC models.	Simulation study that evaluated the efficacy of nine commercial tourniquets on PVC pipe with rubber tubing models of 6 different diameters. Study investigators were unblinded. Success was determined by the ability to stop the flow of water distally.	Serious	indirectness and imprecision	The SWA1, TMK9, RATS and CRMT were successful stopping the flow of water on all sized mannequins (down to 3.81 cm diameter, 11.9 cm circumference). The MAT failed on PVC sizes 7.62 cm diameter (23.9 cm circumference) and smaller. The TMT and SOFTTW started failing on diameters 6.35 cm (19.9 cm circumference) and smaller. The CAT, SAMXT, TMT, and SOFTTW failed on the 5.08 cm	Support	LUE 4	Poor, variable results. Difficult to extrapolate to clinical use.

	2018;22:1 01-150.					diameter (16.0 cm circumference) models			
Sokol KK, Black GE, Azarow KS, Long W, Martin MJ, Eckert MJ.	Prehospita I interventi ons in severely injured pediatric patients: Rethinkin g the ABCs. J Trauma Acute Care Surg. 2015 Dec;79(6) :983-9; discussion 989-90. doi: 10.1097/T A.000000 0000007 06.	Supports. Provides field data on the use of tourniquets in the pediatric population.	Retrospective chart from the Department of Defense Trauma Registry of pediatric injuries (less than or equal to 18 years of age) treated at Camp Bastion Afghanistan from 2004-2012.	Not serious	Serious imprecision	125 patients had significant extremity injuries that were determined to be amenable to a tourniquet however only 47 received a pre hospital tourniquet. There was no difference in mortality when corrected for injury severity. Lower extremity amputations treated with a pre hospital tourniquet required less intravenous fluids [2.4 (3.2) L vs 4.2 (4.0) L, p = 0.032], however there was no statistical difference in blood product requirements, nor in IVF or blood product requirements on upper extremity amputations.	Support	LOE 3b	Fair, provides some comparative data on outcomes for those pediatric patients with versus those without a tourniquet placed in the field.
Kragh JF Jr, Cooper A, Aden JK, Dubick MA, Baer DG, Wade CE,	Survey of trauma registry data on tourniquet use in	Supports. Provides field data on the use of tourniquets in the pediatric population.	Retrospective chart review from the Joint Trauma System's Joint Theater Trauma Registry examining	Not serious	Serious imprecision	88 patients were identified in which a tourniquet was applied, with an average age of 11	Support	LOE 3b	Poor. Provides epidemiologic data on pediatric patients with

Blackbourne	pediatric	the use of	years.	filed placemer
LH.	war	tourniquets in	Explosions	of a tournique
	casualties.	pediatric trauma	accounted for	
	Pediatr	care (less than 18	64% of injuries,	
	Emerg	years of age).	followed by	
	Care.	During the study	gunshot wounds	
	2012	period of May 17,	(30%), machinery	
	Dec;28(12	2003 to December	accidents (3%),	
):1361-5.	25, 2009.	knife wounds	
	doi:		(1%) and motor	
	10.1097/P		vehicle crashes	
	EC.0b013		(1%). The overall	
	e318276c		survival rate was	
	260.		93% (74/81) with	
			is similar to	
			historic data from	
			published	
			tourniquet studies	
			of adult patients	
			(87%)	

Other References

Bobko J, Lai TT, Smith ER, Shapiro GL, Baldridge RT, Callaway DW. Tactical emergency casualty care - pediatric appendix: novel guidelines for the care of the pediatric casualty in the high-threat, prehospital environment. J Spec Oper Med. 2013 Winter;13(4):94-107.

Brodie S, Hodgetts TJ, Ollerton J, et al. Tourniquet use in combat trauma: UK military experience. J Royal Army Med Corps. 2007;153:310Y313.

Cunningham A, Auerbach M, Cicero M, Jafri M. Tourniquet usage in prehospital care and resuscitation of pediatric trauma patients-Pediatric Trauma Society position statement. J Trauma Acute Care Surg. 2018 Oct;85(4):665-667. doi: 10.1097/TA.000000000001839.

Guice KS, Cassidy LD, Oldham KT. Traumatic injury and children: a national assessment. J Trauma. 2007 Dec;63(6 Suppl):S68-80; discussion S81-6.

Joint Trauma System (JTS) / Committee on Tactical Combat Casualty Care (CoTCCC). CoTCCC Recommended Devices & Adjuncts. May 8, 2019. Available at: https://books.allogy.com/web/tenant/8/books/f94aad5b-78f3-42be-b3de-8e8d63343866/. Accessed May 28, 2019.

Kragh JF Jr, Walters TJ, Baer DG, et al. Practical use of emergency tourniquets to stop bleeding in major limb trauma. J Trauma. 2008;64(suppl 2):S38YS49; discussion S49YS50.

Kragh JF Jr, Walters TJ, Baer DG, et al. Survival with emergency tourniquet use to stop bleeding in major limb trauma. Ann Surg. 2009;249:1Y7.

National Center for Injury Control and Prevention. 10 Leading Causes of Death by Age Group Highlighting Unintentional Injury Deaths United States 2017. Available at: https://www.cdc.gov/injury/images/lc-charts/leading_causes_of_death_by_age_group_unintentional_2017_1100w850h.jpg Accessed April 18, 2019.

Schecter SC, Betts J, Schecter WP, Victorino GP. Pediatric penetrating trauma: the epidemic continues. J Trauma Acute Care Surg. 2012 Sep;73(3):721-5. doi: 10.1097/TA.0b013e318265cdce.

Snyder RG, Spencer ML, Owings CL, Schneider LW Physical Characteristics of Children as Related to Death and Injury for Consumer Product Safety Design. US Food and Drug Administration. UM-HSRIBI-75-5 Final Report. PP 196–211. Silver Spring, MD. May 1975.

Level of	Definitions
Evidence	(See manuscript for full details)
Level 1a	Experimental and Population based studies - population based, randomized prospective studies or meta-analyses
	of multiple higher evidence studies with substantial effects
Level 1b	Smaller Experimental and Epidemiological studies - Large non-population based epidemiological studies or
	randomized prospective studies with smaller or less significant effects
Level 2a	Prospective Observational Analytical - Controlled, non-randomized, cohort studies
Level 2b	Retrospective/Historical Observational Analytical - non-randomized, cohort or case-control studies
Level 3a	Large Descriptive studies – Cross-section, Ecological, Case series, Case reports
Level 3b	Small Descriptive studies – Cross-section, Ecological, Case series, Case reports
Level 4	Animal studies or mechanical model studies
Level 5	Peer-reviewed Articles - state of the art articles, review articles, organizational statements or guidelines, editorials,
	or consensus statements
Level 6	Non-peer reviewed published opinions - such as textbook statements, official organizational publications,
	guidelines and policy statements which are not peer reviewed and consensus statements
Level 7	Rational conjecture (common sense); common practices accepted before evidence-based guidelines
Level 1-6E	Extrapolations from existing data collected for other purposes, theoretical analyses which is on-point with question
	being asked. Modifier E applied because extrapolated but ranked based on type of study.