

Scientific Advisory Council

American Red Cross Scientific Advisory Council Scientific Review Compression Only CPR

Questions to be addressed:

For adult patients, in non-traumatic cardiopulmonary arrest, when managed by lay responders or trained healthcare providers, does continuous cardiac compressions (CCC) or hands only CPR, without expired air ventilation, improve outcomes?

Introduction/Overview:

Achieving a favorable outcome for a patient in cardiopulmonary arrest, defined as discharge from a hospital with minimal to no neurological deficits, is highly dependent on early cardiopulmonary resuscitation. However, despite that this fact has been well known for some time, engagement of bystanders to perform CPR has not been robust. In an effort to bridge this gap, community leaders have encouraged the lay public to perform compression only CPR without ventilations. It is thought that since compression only CPR is easier to learn and doesn't carry the perceived risks of infectious contamination, the public will be more willing to perform compression only CPR compared to traditional CPR with ventilations. Yet, outcome literature on compression only CPR is variable with some studies showing favorable results and others showing equivocal or worse results. Therefore, the purpose of this scientific review is to examine the outcomes of continuous chest compression CPR without pauses for ventilations compared to traditional CPR with pauses for ventilations. This review focuses on both the patient and the rescuer. Regarding the patient, the primary outcomes of interest are survival to discharge neurologically intact. The outcome of interest regarding the rescuer is willingness to perform CPR on a stranger.

Search Strategy and Literature Search Performed

Key Words Used

"chest compression CPR" OR "chest compression cardiopulmonary resuscitation" or "compression only-CPR" OR "compression-only CPR" OR "compression only-CPR" OR "compression-only CPR" OR "compression-only Cardiopulmonary Resuscitation" or "CARDIC CHEST COMPRESSION*" or "continuous cardiac compressions" OR

Search "hands only CPR" OR (hands only cardiopulmonary resuscitation) OR (hands-only cardiopulmonary resuscitation) OR "hands-only CPR" OR "hands-only cardiopulmonary resuscitation"

Inclusion Criteria (time period, type of articles and journals, language, methodology) • Dates of search: Jan 2005 – April 2016

- Article address the study question
- Studies CPR performance by lay responders
- Non-traumatic cardiopulmonary arrest
- Human studies; Animal studies to assess ROSC
- Manikin studies to assess CPR fraction
- Article contains quantitative or qualitative data that can be analyzed
- Compares CCC to traditional CPR (edit made on 10/23/15)
- All languages final review must be able to acquire an English language translation
- Full article review

Exclusion Criteria (only human studies, foreign language, etc...)

- Letters
- Editorials
- Position statements
- Review articles
- Abstracts that did not reach the level of full article publication

Databases Searched and Additional Methods Used (references of articles, texts, contact with authors, etc...)

- PubMed
- CINAHL

Indentification	 Records identified through database searching (n =487+16+12=1002) Additional records identified through other sources (n = 0) 	
Screening	 Records after Duplicates Removed (n=) Records Screened (n= 59) Records Excluded (n=943) 	
Elgibility	 Full-text articles assessed for eligibility (n =59) Full-text articles excluded, with reasons (n = 42) 	
Included	 Studies included in qualitative synthesis (n = 0) Studies included in quantitative synthesis (n = 17) 	

Scientific Foundation:

Outcomes of continuous compression CPR compared to traditional CPR have been studied since the 1990s. Early animal studies by Berg et al and Kern et al published in the late 90s tended to favor CPR with pauses for ventilations. However, latter animal studies, including a study by Kern at all published in 2002, demonstrated improvement with continuous compression CPR. Notably Kern demonstrated improved neurological outcomes, as tested by a standardized method to assess neurological status for swine, with 3 of 15 swine in the traditional CPR group having favorable neurological outcome compared to 12 of 15 swine in the continuous compression group having a favorable outcomes. In aggregate, animal studies that have compared continuous compression CPR to traditional CPR have shown improved results with continuous CPR. Further, the studies that have included an arm with no CPR have all shown that some method of CPR performs better than not doing any CPR.

Although the first two human studies showed equivocal results (Olasveengen 2008; and Ong 2008), the study by Bobrow et al (2010) caught the attention of the healthcare community and the lay press by demonstrating that a community wide effort focused on compression only CPR has the potential to positively affect outcomes. Bobrow et al implemented a large-scale community wide educational program on compression only CPR, known as the SHARE program. Connected to the SHARE initiative, they created a cardiac arrest database and entered cases into the database when bystanders where involved. Bystanders where able to choose the method of performing CPR and EMS providers recorded results. Through a retrospective review

of the SHARE database the authors showed that compression only CPR improved outcomes of survival and discharge neurologically intact compared to CPR with ventilations.

With mounting pressure to implement compression only CPR programs after the Bobrow study, researchers in Japan studied their national cardiac arrest database demonstrating higher survivao rates with traditional CPR with ventilations. When looking at all of the human studies comparing compression only CPR to traditional CPR with ventilations, compression only CPR does not demonstrate improvement in survival to discharge or neurologically intact survival compared to traditional CPR with ventilations. Most notably, the only study that has collected prospective data published by Nichol et al from the resuscitation outcomes consortium demonstrated no difference between the two techniques with regards to survival or discharge neurologically intact.

While compression only CPR has not been shown to improve patient oriented outcomes, the technique does have potential for engaging the public to act. A series of survey studies by Blewer et al, Cho et al, Lu et al, and Cheeks et al have all shown that the lay public is more willing to perform CPR on a stranger using compression only CPR than traditional CPR with pauses for ventilations. Yet, these survey studies have examined the theoretical attitudes of lay public rescuers in performing CPR on a stranger, and do not provide data on actual cases of patients in cardiac arrest.

Taken in aggregate, the science of compression only CPR compared to traditional CPR with pauses for ventilations shows equivocal results in patient oriented outcomes between the two techniques, if not better results with traditional CPR. This is balanced by the literature showing that the lay public is more willing to perform compression only CPR on a stranger than CPR with pauses for ventilations.

Recommendations and Strength:

Standards:

• Perform chest compressions on adult patients with out-of-hospital cardiopulmonary arrest

Guidelines:

• When feasible, CPR should be performed with ventilations in a compression to ventilation ratio of 30:2

Options:

• Chest compression only CPR may be taught as an alternative to CPR with compressions and ventilation and should be performed when compared to no CPR for patients in cardiopulmonary arrest

Knowledge Gaps and Future Research:

This scientific review identifies that when possible CPR should be performed with intermittent ventilations, but also shows a disassociation in that the lay public is more willing to perform compression only CPR. The results of this review suggest that the untrained lay public should be encouraged to perform compression only CPR, but individuals in the lay public that are

motivated to be more fully trained and professional healthcare providers should perform CPR with ventilations.

What is not known is the relationship between compression only CPR as performed by untrained bystanders and the care provided by EMS providers. We also do not know if lives are actually saved through the integration of these trainings. Finally, we know that the attitudes of bystanders favor compression only CPR, but we don't know rates of the public actually engaging in CPR by compression only vs. compression with ventilation CPR

Implications for ARC Programs:

ARC programs should focus on training that meets the individual needs and attitudes of the learner. A one size fits all approach will only push out those that are not interested in performing ventilations. Rather, we should encourage and train the lay public to perform the skills that they will ultimately feel comfortable performing with the philosophy that something is better than nothing.

Scientific Advisory Council

American Red Cross Scientific Advisory Council Scientific Review Compression Only CPR

Summary of Key Articles/Literature Found and Level of Evidence/Bibliography:

Return of Spontaneous Circulation (ROSC)/24 hour survival/Good Neurological Outcome - Animal Studies

Full Citation	Summary of Article	Methodology	Key results and magnitude of results	Favors
Berg, et al. Assisted ventilation	Swine randomized to chest	Prospective	ROSC	ROSC
does not improve outcome in a	compression + ventilation	randomized	CCV = 9/10 = 90%	CCV
porcine model of single rescuer	(CC+V); CC Only; or No	controlled trial	CCC = 10/10 = 100%	
bystander cardiopulmonary	CPR		No = 4/6 = 66.7%	Survival
resuscitation. Circulation. 1997;			<u>24 hour survival</u>	CCC
95: 1635-41.			CCV = 6/10 = 60%	
			CCC = 5/10 = 50%	
Berg, et al. Assisted ventilation	Swine randomized to CC+V;	Prospective	ROSC	ROSC
during bystander CPR in a	CC only or No CPR. Prior to	randomized	CCV = 8/15 = 53.3%	Survival
swine acute myocardial	induction of VFib the LAD	controlled trial	CCC = 8/14 = 57.1%	CCC
infarction model does not	was obstructed with a		No = 9/14 = 64.3%	
improve outcome. Circulation.	cylinder.		<u>23 hour survival</u>	
1997; 96: 4364-71.			CCV = 3/15 = 20%	
			CCC = 5/14 = 35.7%	
			No = 1/14 = 7.1%	
Kern, et al. Efficacy of chest	Swine randomly assigned to	Prospective	<u>24 hour survival</u>	Survival
compression only BLS-CPR in	standard CPR with ET tube	randomized	CCV = 10/10 = 100%	CCV
the presence of an occluded	for ventilation with 15:2 or	controlled trial	CCC = 9/10 = 90%	
airway. Resuscitation. 1998;	compression only CPR with			
39:179-88.	ET tube clamped			

Kern, et al. Importance of continuous chest compressions during cardiopulmonary resuscitation. Circulation 2002; 105: 645-49.	Swine randomized to standard CPR with 15:2 or compression only CPR	Prospective randomized controlled trial	$\frac{ROSC}{CCV} = 6/5 = 40\%$ $CCC = 13/15 = 86.7\%$ <u>Neuro intact at 24 hours</u> $CCV = 3/15 = 20\%$ $CCC = 12/15 = 80\%$	<u>ROSC</u> <u>Neuro</u> CCC
Ewy, et al. Improved neurological outcome with continuous chest compressions compared with 30:2 compressions to ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiopulmonary arrest. Circulation. 2007; 116: 2525- 30.	Swine randomized to continuous chest compression CPR or CPR with 30:2. Four groups with increasing duration of pause prior to initiating CPR: 3, 4, 5, 6 min	Prospective randomized controlled trial	<u>Neuro intact survival</u> CCV = 13/31 = 41.9% CCC = 23/33 = 69.7%	<u>Neuro</u> CCC
Ewy, et al. Continuous chest compression resuscitation in arrested swine with upper airway inspiratory obstruction. Resuscitation. 2010; 81: 585- 90.	Swine randomized to 30:2; Continuous with unobstructed ET tube; or continuous with obstructed ET tube	Prospective randomized controlled trial	$\frac{ROSC}{CCV} = 8/10 = 80\%$ $CCC = 20/20 = 100\%$ $\frac{Neuro intact}{CCV} = 8/10 = 80\%$ $CCC = 19/20 = 95\%$	<u>ROSC</u> <u>Neuro</u> CCC
Mader, et al. A randomized comparison of cardiocerebral and cardiopulmonary resuscitation using a swine model of prolonged ventricular fibrillation. Resuscitation. 2010; 81: 596-602.	Swine randomized to 30:2 with pauses for intubation or continuous chest compressions. Model for professional rescuer resuscitation.	Prospective randomized controlled trial	$\frac{ROSC}{CCV} = \frac{8}{26} = 30.8\%$ $CCC = \frac{16}{27} = \frac{59.3\%}{20 \text{ minute survival}}$ $CCV = \frac{5}{26} = \frac{19.2\%}{20}$ $CCC = \frac{11}{27} = 40.7\%$	ROSC Survival CCC

Wang, et al. Effect of	After 4 min of untreated VFib	Prospective	ROSC	ROSC
continuous compressions and	arrest swine randomized to	randomized	CCV = 10/12 = 83.3%	No diff
30:2 cardiopulmonary	30:2 or continuous chest	controlled trial	CCC = 10/12 = 83.3%	Survival
resuscitation on global	compressions		<u>24 hour survival</u>	CCC
ventilation/perfusion values	-		CCV = 8/10 = 80%	
during resuscitation of a porcine			CCC = 9/10 = 90%	
model. Crit Care Med. 2010;				
38: 2024-30.				

Return of Spontaneous Circulation (ROSC)/24 hour survival/Good Neurological Outcome – Human Studies

Full Citation	Summary of Article	Methodology	Key results and magnitude of results	Favors
Olasveenven, et al. Standard	Patients treated with	Retrospective	Survival – discharge alive	<u>Survival</u>
basic life support vs. continuous	bystander CPR, EMS	observational	CCV = 35/182 = 12.5%	No diff
chest compression only in out-	providers assessed if patient	study	CCC = 15/145 = 10.3%	
of-hospital cardiac arrest. Acta	received standard bystander		No = 23/269 = 8.6%	<u>Neuro</u>
Anesthesiol Scand. 2008; 52:	CPR vs. compression only		P = 0.647	CCV
914-19.	CPR. EMS providers then		<u>Neuro – discharge CPC 1 or 2</u>	
	intubated and performed		CCV = 31/281 = 11.0%	
	continuous chest compression		CCC = 14/145 = 9.7%	
	with asynchronous ventilation		No = 23/269 = 8.6%	
	at rate of 12/min. Outcomes			
	studied. May 2003 – May			
	2006.			
Ong, et al. Comparison of chest	Comparison of patients in	Retrospective	ROSC	ROSC
compression only and standard	cardiac arrest by bystander	review of	CCV = 48/287 = 16.7%	Survial
cardiopulmonary resuscitation	CPR type – compression with	prospectively	CCC = 27/154 = 17.5%	No diff
for out-of-hospital cardiac arrest	ventilation, compression only	collected	P = 0.984	
in Singapore. Resuscitation;	or no CPR. Data collected by	cardiac arrest	Survival – to Discharge	
2008: 78: 119-126.	EMS provider from	registry data	CCV = 8/287 = 2.8%	
			CCC = 4/154 = 2.6%	

	bystanders. Oct 2001 – Oct 2004.	from Singapore	P = 1.000	
Bobrow, et al. Chest compression only CPR by lay rescuers and survival from out- of-hospital cardiac arrest. JAMA. 2010; 304: 1447-54.	Comparison of patients in cardiac arrest by bystander CPR type – compression with ventilation, compression only or no CPR. Data collected by EMS provider from observation after specific training or from bystanders. Jan 2005 – Dec 2009	Retrospective review of prospectively collected data from the SHARE cardiac arrest registry database	$\frac{\text{Survival} - \text{to Discharge}}{\text{CCV} = 52/666 = 7.7\%}$ $\text{CCC} = 113/849 = 13.3\%$ $\text{No} = 150/2900 = 5.2\%$ $\text{OR } 1.60 (95\% \text{ CI } 1.08 - 2.35)$ $\frac{\text{Neuro} - \text{CPC } 1 \text{ or } 2}{\text{CCV} = 34/666 = 5.1\%}$ $\text{CCC} = 61/849 = 7.2\%$ $\text{No} = 86/2900 = 3.0\%$	<u>Survival</u> <u>Neuro</u> CCC
Iwami, et al. Dissemination of compression-only cardiopulmonary resuscitation and survival after out-of- hospital cardiac arrest. Circulation. 2015; 132: 415-22.	Study of impact of nation wide chest compression only CPR training. Assessed outcomes of three study groups OHCA – chest compression only, conventional with ventilation, or no bystander CPR. Jan 2005 – Dec 2012	Retrospective review of prospectively collected cardiac arrest registry data - Japan	$\begin{array}{r} P < 0.001 \\ \hline ROSC \\ CCV = 7982/100469 = 7.9\% \\ CCC = 15818/249970 = 6.3\% \\ No = 24163/465946 = 5.2\% \\ P < 0.001 \\ \hline Survival - 1 month \\ CCV = 5717/100469 = 5.7\% \\ CCC = 10685/249970 = 4.3\% \\ No = 16636/465946 = 1.4\% \\ P < 0.001 \\ \hline Neuro - CPC 1 \text{ or } 2 \\ CCV = 2690/100469 = 2.7\% \\ CCC = 4846/249970 = 1.9\% \\ No = 5762/465946 = 1.2\% \\ P < 0.001 \\ \end{array}$	ROSC Survival Neuro CCV
Nichol, et al. Trial of continuous or interrupted chest compressions during CPR. NEJM. 2015; 373: 2203-14.	Patients randomized to EMS provider CPR by continuous with asynchronous ventilations or compressions with pause for ventilation. Percentage of patients	Randomized controlled trial	$\frac{ROSC}{CCV} = 2799/11051 = 25.3\%$ $CCC = 3058/12646 = 24.2\%$ $P = 0.07$ $\frac{Survival - to \ discharge}{CCV} = 1072/11035 = 9.7\%$	<u>ROSC</u> <u>Survival</u> <u>Neuro</u> No diff

	receiving bystander controlled but not by the type of bystander CPR. June 2011 – May 2015.		$\begin{array}{c} CCC = 1129/12613 = 9.0\% \\ P = 0.07 \\ \underline{Neuro - intact MRS < 4} \\ CCV = 844/10995 = 7.7\% \\ CCC = 883/12560 = 7.0\% \\ P = 0.09 \end{array}$	
Willingness to Perform Cl				
Full Citation	Summary of Article	Methodology	Key results and magnitude of results	Favors
Cho, et al. The effect of basic	Laypeople taking a CPR	Prospectively	Willing to perform CPR - stranger/no training	Stranger
life support education on	course. Before and after	collected	CCV = 19%	CCC
laypersons willingness in	questionnaire regarding	before and	CCC = 30.1%	
performing bystander hands	attitudes towards performing	after survey	OR 1.8 $(95\% \text{ CI}) = 1.5 - 2.3)$	<u>Family</u>
only cardiopulmonary	CPR		<u>Willing to preform CPR – stranger/training</u>	No diff
resuscitation. Resuscitation.			CCV = 55.7%	
2010; 81: 691-94.			CCC = 71.9%	
			OR 2.0 (95% CI 1.7 – 2.5) Willing to perform CPR – family/training	
			$\frac{\text{Winnig to perform CFK - family/training}}{\text{CCV} = 84.4\%$	
			CCC = 86.9%	
			OR 1.2 (95% CI 0.9 – 1.6)	
Blewer, et al. Continuous chest	Family members of	Prospective	Willing to preform CPR – stranger/training	Stranger
compression cardiopulmonary	hospitalized patients	randomized	$\frac{1}{CCV} = 57/99 = 28\%$	No diff
resuscitation training promotes	randomized to CPR training	study with	CCC = 71/207 = 34%	
rescuer self confidence and	with chest compressions and	survey	P = 0.08	Share
increased secondary training: A	ventilations or compression	instrument	Likely to share training with others	CCC
hospital-based randomized	only CPR. Students surveyed		CCV = 139/199 = 67%	
controlled trial. Crit Care Med.	regarding attitudes towards		CCC = 152/207 = 73%	
2012; 40: 787-92.	doing CPR and rates of		P = 0.03	
	sharing knowledge with			
	others			
Cheskes, et al. Are Canadians	Survey of random sample of	Prospectively	<u>Willing to perform CPR – stranger/no training</u>	Stranger
more willing to provide chest-	Canadian citizens assessing	collected	CCV = 38.8%	CCC
compression-only		data from	CCC = 55.1%	

cardiopulmonary resuscitation	knowledge and willingness to	survey	P < 0.001	
(CPR)? – a nationwide public	perform CPR.	instrument		
survey. CJEM. 2015: 0: 1-11.				
Lu, et al. An exploration of	Convenience sample of	Prospectively	Willing to perform CPR – stranger/no training	<u>Stranger</u>
attitudes towards bystander	university students. Survey of	collected	CCV = 32.7%	CCC
cardiopulmonary resuscitation	attitudes towards performing	data from	CCC = 49.0%	
in university students in Tianjin,	CPR with ventilations vs	survey	P < 0.05	<u>Family</u>
China: a survey. Int Emerg	chest compression only CPR	instrument	Willing to perform CPR – family/ no training	No diff
Nursing. 2015;			CCV > 0.05	

Level of	Definitions
Evidence	(See manuscript for full details)
Level 1a	Experimental and Population based studies - population based, randomized prospective studies or meta-analyses of multiple
	higher evidence studies with substantial effects
Level 1b	Smaller Experimental and Epidemiological studies - Large non-population based epidemiological studies or randomized
	prospective studies with smaller or less significant effects
Level 2a	Prospective Observational Analytical - Controlled, non-randomized, cohort studies
Level 2b	Retrospective/Historical Observational Analytical - non-randomized, cohort or case-control studies
Level 3a	Large Descriptive studies – Cross-section, Ecological, Case series, Case reports
Level 3b	Small Descriptive studies – Cross-section, Ecological, Case series, Case reports
Level 4	Animal studies or mechanical model studies
Level 5	Peer-reviewed Articles - state of the art articles, review articles, organizational statements or guidelines, editorials, or
	consensus statements
Level 6	Non-peer reviewed published opinions - such as textbook statements, official organizational publications, guidelines and
	policy statements which are not peer reviewed and consensus statements
Level 7	Rational conjecture (common sense); common practices accepted before evidence-based guidelines
Level 1-6E	Extrapolations from existing data collected for other purposes, theoretical analyses which is on-point with question being
	asked. Modifier E applied because extrapolated but ranked based on type of study.